Metamath Proof Explorer


Theorem cdlemi1

Description: Part of proof of Lemma I of Crawley p. 118. (Contributed by NM, 18-Jun-2013)

Ref Expression
Hypotheses cdlemi.b B = Base K
cdlemi.l ˙ = K
cdlemi.j ˙ = join K
cdlemi.m ˙ = meet K
cdlemi.a A = Atoms K
cdlemi.h H = LHyp K
cdlemi.t T = LTrn K W
cdlemi.r R = trL K W
cdlemi.e E = TEndo K W
Assertion cdlemi1 K HL W H U E G T P A ¬ P ˙ W U G P ˙ P ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemi.b B = Base K
2 cdlemi.l ˙ = K
3 cdlemi.j ˙ = join K
4 cdlemi.m ˙ = meet K
5 cdlemi.a A = Atoms K
6 cdlemi.h H = LHyp K
7 cdlemi.t T = LTrn K W
8 cdlemi.r R = trL K W
9 cdlemi.e E = TEndo K W
10 simp1l K HL W H U E G T P A ¬ P ˙ W K HL
11 10 hllatd K HL W H U E G T P A ¬ P ˙ W K Lat
12 simp1 K HL W H U E G T P A ¬ P ˙ W K HL W H
13 simp2l K HL W H U E G T P A ¬ P ˙ W U E
14 simp2r K HL W H U E G T P A ¬ P ˙ W G T
15 6 7 9 tendocl K HL W H U E G T U G T
16 12 13 14 15 syl3anc K HL W H U E G T P A ¬ P ˙ W U G T
17 simp3l K HL W H U E G T P A ¬ P ˙ W P A
18 1 5 atbase P A P B
19 17 18 syl K HL W H U E G T P A ¬ P ˙ W P B
20 1 6 7 ltrncl K HL W H U G T P B U G P B
21 12 16 19 20 syl3anc K HL W H U E G T P A ¬ P ˙ W U G P B
22 1 6 7 8 trlcl K HL W H U G T R U G B
23 12 16 22 syl2anc K HL W H U E G T P A ¬ P ˙ W R U G B
24 1 3 latjcl K Lat P B R U G B P ˙ R U G B
25 11 19 23 24 syl3anc K HL W H U E G T P A ¬ P ˙ W P ˙ R U G B
26 1 6 7 8 trlcl K HL W H G T R G B
27 12 14 26 syl2anc K HL W H U E G T P A ¬ P ˙ W R G B
28 1 3 latjcl K Lat P B R G B P ˙ R G B
29 11 19 27 28 syl3anc K HL W H U E G T P A ¬ P ˙ W P ˙ R G B
30 1 2 3 latlej2 K Lat P B U G P B U G P ˙ P ˙ U G P
31 11 19 21 30 syl3anc K HL W H U E G T P A ¬ P ˙ W U G P ˙ P ˙ U G P
32 2 3 4 5 6 7 8 trlval2 K HL W H U G T P A ¬ P ˙ W R U G = P ˙ U G P ˙ W
33 16 32 syld3an2 K HL W H U E G T P A ¬ P ˙ W R U G = P ˙ U G P ˙ W
34 33 oveq2d K HL W H U E G T P A ¬ P ˙ W P ˙ R U G = P ˙ P ˙ U G P ˙ W
35 1 3 latjcl K Lat P B U G P B P ˙ U G P B
36 11 19 21 35 syl3anc K HL W H U E G T P A ¬ P ˙ W P ˙ U G P B
37 simp1r K HL W H U E G T P A ¬ P ˙ W W H
38 1 6 lhpbase W H W B
39 37 38 syl K HL W H U E G T P A ¬ P ˙ W W B
40 1 2 3 latlej1 K Lat P B U G P B P ˙ P ˙ U G P
41 11 19 21 40 syl3anc K HL W H U E G T P A ¬ P ˙ W P ˙ P ˙ U G P
42 1 2 3 4 5 atmod3i1 K HL P A P ˙ U G P B W B P ˙ P ˙ U G P P ˙ P ˙ U G P ˙ W = P ˙ U G P ˙ P ˙ W
43 10 17 36 39 41 42 syl131anc K HL W H U E G T P A ¬ P ˙ W P ˙ P ˙ U G P ˙ W = P ˙ U G P ˙ P ˙ W
44 eqid 1. K = 1. K
45 2 3 44 5 6 lhpjat2 K HL W H P A ¬ P ˙ W P ˙ W = 1. K
46 45 3adant2 K HL W H U E G T P A ¬ P ˙ W P ˙ W = 1. K
47 46 oveq2d K HL W H U E G T P A ¬ P ˙ W P ˙ U G P ˙ P ˙ W = P ˙ U G P ˙ 1. K
48 hlol K HL K OL
49 10 48 syl K HL W H U E G T P A ¬ P ˙ W K OL
50 1 4 44 olm11 K OL P ˙ U G P B P ˙ U G P ˙ 1. K = P ˙ U G P
51 49 36 50 syl2anc K HL W H U E G T P A ¬ P ˙ W P ˙ U G P ˙ 1. K = P ˙ U G P
52 47 51 eqtrd K HL W H U E G T P A ¬ P ˙ W P ˙ U G P ˙ P ˙ W = P ˙ U G P
53 34 43 52 3eqtrd K HL W H U E G T P A ¬ P ˙ W P ˙ R U G = P ˙ U G P
54 31 53 breqtrrd K HL W H U E G T P A ¬ P ˙ W U G P ˙ P ˙ R U G
55 2 6 7 8 9 tendotp K HL W H U E G T R U G ˙ R G
56 12 13 14 55 syl3anc K HL W H U E G T P A ¬ P ˙ W R U G ˙ R G
57 1 2 3 latjlej2 K Lat R U G B R G B P B R U G ˙ R G P ˙ R U G ˙ P ˙ R G
58 11 23 27 19 57 syl13anc K HL W H U E G T P A ¬ P ˙ W R U G ˙ R G P ˙ R U G ˙ P ˙ R G
59 56 58 mpd K HL W H U E G T P A ¬ P ˙ W P ˙ R U G ˙ P ˙ R G
60 1 2 11 21 25 29 54 59 lattrd K HL W H U E G T P A ¬ P ˙ W U G P ˙ P ˙ R G