Metamath Proof Explorer


Theorem cdlemi1

Description: Part of proof of Lemma I of Crawley p. 118. (Contributed by NM, 18-Jun-2013)

Ref Expression
Hypotheses cdlemi.b B=BaseK
cdlemi.l ˙=K
cdlemi.j ˙=joinK
cdlemi.m ˙=meetK
cdlemi.a A=AtomsK
cdlemi.h H=LHypK
cdlemi.t T=LTrnKW
cdlemi.r R=trLKW
cdlemi.e E=TEndoKW
Assertion cdlemi1 KHLWHUEGTPA¬P˙WUGP˙P˙RG

Proof

Step Hyp Ref Expression
1 cdlemi.b B=BaseK
2 cdlemi.l ˙=K
3 cdlemi.j ˙=joinK
4 cdlemi.m ˙=meetK
5 cdlemi.a A=AtomsK
6 cdlemi.h H=LHypK
7 cdlemi.t T=LTrnKW
8 cdlemi.r R=trLKW
9 cdlemi.e E=TEndoKW
10 simp1l KHLWHUEGTPA¬P˙WKHL
11 10 hllatd KHLWHUEGTPA¬P˙WKLat
12 simp1 KHLWHUEGTPA¬P˙WKHLWH
13 simp2l KHLWHUEGTPA¬P˙WUE
14 simp2r KHLWHUEGTPA¬P˙WGT
15 6 7 9 tendocl KHLWHUEGTUGT
16 12 13 14 15 syl3anc KHLWHUEGTPA¬P˙WUGT
17 simp3l KHLWHUEGTPA¬P˙WPA
18 1 5 atbase PAPB
19 17 18 syl KHLWHUEGTPA¬P˙WPB
20 1 6 7 ltrncl KHLWHUGTPBUGPB
21 12 16 19 20 syl3anc KHLWHUEGTPA¬P˙WUGPB
22 1 6 7 8 trlcl KHLWHUGTRUGB
23 12 16 22 syl2anc KHLWHUEGTPA¬P˙WRUGB
24 1 3 latjcl KLatPBRUGBP˙RUGB
25 11 19 23 24 syl3anc KHLWHUEGTPA¬P˙WP˙RUGB
26 1 6 7 8 trlcl KHLWHGTRGB
27 12 14 26 syl2anc KHLWHUEGTPA¬P˙WRGB
28 1 3 latjcl KLatPBRGBP˙RGB
29 11 19 27 28 syl3anc KHLWHUEGTPA¬P˙WP˙RGB
30 1 2 3 latlej2 KLatPBUGPBUGP˙P˙UGP
31 11 19 21 30 syl3anc KHLWHUEGTPA¬P˙WUGP˙P˙UGP
32 2 3 4 5 6 7 8 trlval2 KHLWHUGTPA¬P˙WRUG=P˙UGP˙W
33 16 32 syld3an2 KHLWHUEGTPA¬P˙WRUG=P˙UGP˙W
34 33 oveq2d KHLWHUEGTPA¬P˙WP˙RUG=P˙P˙UGP˙W
35 1 3 latjcl KLatPBUGPBP˙UGPB
36 11 19 21 35 syl3anc KHLWHUEGTPA¬P˙WP˙UGPB
37 simp1r KHLWHUEGTPA¬P˙WWH
38 1 6 lhpbase WHWB
39 37 38 syl KHLWHUEGTPA¬P˙WWB
40 1 2 3 latlej1 KLatPBUGPBP˙P˙UGP
41 11 19 21 40 syl3anc KHLWHUEGTPA¬P˙WP˙P˙UGP
42 1 2 3 4 5 atmod3i1 KHLPAP˙UGPBWBP˙P˙UGPP˙P˙UGP˙W=P˙UGP˙P˙W
43 10 17 36 39 41 42 syl131anc KHLWHUEGTPA¬P˙WP˙P˙UGP˙W=P˙UGP˙P˙W
44 eqid 1.K=1.K
45 2 3 44 5 6 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
46 45 3adant2 KHLWHUEGTPA¬P˙WP˙W=1.K
47 46 oveq2d KHLWHUEGTPA¬P˙WP˙UGP˙P˙W=P˙UGP˙1.K
48 hlol KHLKOL
49 10 48 syl KHLWHUEGTPA¬P˙WKOL
50 1 4 44 olm11 KOLP˙UGPBP˙UGP˙1.K=P˙UGP
51 49 36 50 syl2anc KHLWHUEGTPA¬P˙WP˙UGP˙1.K=P˙UGP
52 47 51 eqtrd KHLWHUEGTPA¬P˙WP˙UGP˙P˙W=P˙UGP
53 34 43 52 3eqtrd KHLWHUEGTPA¬P˙WP˙RUG=P˙UGP
54 31 53 breqtrrd KHLWHUEGTPA¬P˙WUGP˙P˙RUG
55 2 6 7 8 9 tendotp KHLWHUEGTRUG˙RG
56 12 13 14 55 syl3anc KHLWHUEGTPA¬P˙WRUG˙RG
57 1 2 3 latjlej2 KLatRUGBRGBPBRUG˙RGP˙RUG˙P˙RG
58 11 23 27 19 57 syl13anc KHLWHUEGTPA¬P˙WRUG˙RGP˙RUG˙P˙RG
59 56 58 mpd KHLWHUEGTPA¬P˙WP˙RUG˙P˙RG
60 1 2 11 21 25 29 54 59 lattrd KHLWHUEGTPA¬P˙WUGP˙P˙RG