| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemi.b |  | 
						
							| 2 |  | cdlemi.l |  | 
						
							| 3 |  | cdlemi.j |  | 
						
							| 4 |  | cdlemi.m |  | 
						
							| 5 |  | cdlemi.a |  | 
						
							| 6 |  | cdlemi.h |  | 
						
							| 7 |  | cdlemi.t |  | 
						
							| 8 |  | cdlemi.r |  | 
						
							| 9 |  | cdlemi.e |  | 
						
							| 10 |  | simp1l |  | 
						
							| 11 |  | simp1r |  | 
						
							| 12 |  | simp21 |  | 
						
							| 13 |  | simp1 |  | 
						
							| 14 |  | simp23 |  | 
						
							| 15 |  | simp22 |  | 
						
							| 16 | 6 7 | ltrncnv |  | 
						
							| 17 | 13 15 16 | syl2anc |  | 
						
							| 18 | 6 7 | ltrnco |  | 
						
							| 19 | 13 14 17 18 | syl3anc |  | 
						
							| 20 | 6 7 9 | tendovalco |  | 
						
							| 21 | 10 11 12 19 15 20 | syl32anc |  | 
						
							| 22 |  | coass |  | 
						
							| 23 | 1 6 7 | ltrn1o |  | 
						
							| 24 | 13 15 23 | syl2anc |  | 
						
							| 25 |  | f1ococnv1 |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 26 | coeq2d |  | 
						
							| 28 | 1 6 7 | ltrn1o |  | 
						
							| 29 | 13 14 28 | syl2anc |  | 
						
							| 30 |  | f1of |  | 
						
							| 31 |  | fcoi1 |  | 
						
							| 32 | 29 30 31 | 3syl |  | 
						
							| 33 | 27 32 | eqtrd |  | 
						
							| 34 | 22 33 | eqtrid |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 21 35 | eqtr3d |  | 
						
							| 37 | 36 | fveq1d |  | 
						
							| 38 | 6 7 9 | tendocl |  | 
						
							| 39 | 13 12 19 38 | syl3anc |  | 
						
							| 40 | 6 7 9 | tendocl |  | 
						
							| 41 | 13 12 15 40 | syl3anc |  | 
						
							| 42 |  | simp3l |  | 
						
							| 43 | 2 5 6 7 | ltrncoval |  | 
						
							| 44 | 13 39 41 42 43 | syl121anc |  | 
						
							| 45 | 37 44 | eqtr3d |  | 
						
							| 46 | 2 5 6 7 | ltrnel |  | 
						
							| 47 | 41 46 | syld3an2 |  | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 | cdlemi1 |  | 
						
							| 49 | 13 12 19 47 48 | syl121anc |  | 
						
							| 50 | 45 49 | eqbrtrd |  |