Metamath Proof Explorer


Theorem cdlemi2

Description: Part of proof of Lemma I of Crawley p. 118. (Contributed by NM, 18-Jun-2013)

Ref Expression
Hypotheses cdlemi.b B = Base K
cdlemi.l ˙ = K
cdlemi.j ˙ = join K
cdlemi.m ˙ = meet K
cdlemi.a A = Atoms K
cdlemi.h H = LHyp K
cdlemi.t T = LTrn K W
cdlemi.r R = trL K W
cdlemi.e E = TEndo K W
Assertion cdlemi2 K HL W H U E F T G T P A ¬ P ˙ W U G P ˙ U F P ˙ R G F -1

Proof

Step Hyp Ref Expression
1 cdlemi.b B = Base K
2 cdlemi.l ˙ = K
3 cdlemi.j ˙ = join K
4 cdlemi.m ˙ = meet K
5 cdlemi.a A = Atoms K
6 cdlemi.h H = LHyp K
7 cdlemi.t T = LTrn K W
8 cdlemi.r R = trL K W
9 cdlemi.e E = TEndo K W
10 simp1l K HL W H U E F T G T P A ¬ P ˙ W K HL
11 simp1r K HL W H U E F T G T P A ¬ P ˙ W W H
12 simp21 K HL W H U E F T G T P A ¬ P ˙ W U E
13 simp1 K HL W H U E F T G T P A ¬ P ˙ W K HL W H
14 simp23 K HL W H U E F T G T P A ¬ P ˙ W G T
15 simp22 K HL W H U E F T G T P A ¬ P ˙ W F T
16 6 7 ltrncnv K HL W H F T F -1 T
17 13 15 16 syl2anc K HL W H U E F T G T P A ¬ P ˙ W F -1 T
18 6 7 ltrnco K HL W H G T F -1 T G F -1 T
19 13 14 17 18 syl3anc K HL W H U E F T G T P A ¬ P ˙ W G F -1 T
20 6 7 9 tendovalco K HL W H U E G F -1 T F T U G F -1 F = U G F -1 U F
21 10 11 12 19 15 20 syl32anc K HL W H U E F T G T P A ¬ P ˙ W U G F -1 F = U G F -1 U F
22 coass G F -1 F = G F -1 F
23 1 6 7 ltrn1o K HL W H F T F : B 1-1 onto B
24 13 15 23 syl2anc K HL W H U E F T G T P A ¬ P ˙ W F : B 1-1 onto B
25 f1ococnv1 F : B 1-1 onto B F -1 F = I B
26 24 25 syl K HL W H U E F T G T P A ¬ P ˙ W F -1 F = I B
27 26 coeq2d K HL W H U E F T G T P A ¬ P ˙ W G F -1 F = G I B
28 1 6 7 ltrn1o K HL W H G T G : B 1-1 onto B
29 13 14 28 syl2anc K HL W H U E F T G T P A ¬ P ˙ W G : B 1-1 onto B
30 f1of G : B 1-1 onto B G : B B
31 fcoi1 G : B B G I B = G
32 29 30 31 3syl K HL W H U E F T G T P A ¬ P ˙ W G I B = G
33 27 32 eqtrd K HL W H U E F T G T P A ¬ P ˙ W G F -1 F = G
34 22 33 syl5eq K HL W H U E F T G T P A ¬ P ˙ W G F -1 F = G
35 34 fveq2d K HL W H U E F T G T P A ¬ P ˙ W U G F -1 F = U G
36 21 35 eqtr3d K HL W H U E F T G T P A ¬ P ˙ W U G F -1 U F = U G
37 36 fveq1d K HL W H U E F T G T P A ¬ P ˙ W U G F -1 U F P = U G P
38 6 7 9 tendocl K HL W H U E G F -1 T U G F -1 T
39 13 12 19 38 syl3anc K HL W H U E F T G T P A ¬ P ˙ W U G F -1 T
40 6 7 9 tendocl K HL W H U E F T U F T
41 13 12 15 40 syl3anc K HL W H U E F T G T P A ¬ P ˙ W U F T
42 simp3l K HL W H U E F T G T P A ¬ P ˙ W P A
43 2 5 6 7 ltrncoval K HL W H U G F -1 T U F T P A U G F -1 U F P = U G F -1 U F P
44 13 39 41 42 43 syl121anc K HL W H U E F T G T P A ¬ P ˙ W U G F -1 U F P = U G F -1 U F P
45 37 44 eqtr3d K HL W H U E F T G T P A ¬ P ˙ W U G P = U G F -1 U F P
46 2 5 6 7 ltrnel K HL W H U F T P A ¬ P ˙ W U F P A ¬ U F P ˙ W
47 41 46 syld3an2 K HL W H U E F T G T P A ¬ P ˙ W U F P A ¬ U F P ˙ W
48 1 2 3 4 5 6 7 8 9 cdlemi1 K HL W H U E G F -1 T U F P A ¬ U F P ˙ W U G F -1 U F P ˙ U F P ˙ R G F -1
49 13 12 19 47 48 syl121anc K HL W H U E F T G T P A ¬ P ˙ W U G F -1 U F P ˙ U F P ˙ R G F -1
50 45 49 eqbrtrd K HL W H U E F T G T P A ¬ P ˙ W U G P ˙ U F P ˙ R G F -1