Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemi.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemi.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemi.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemi.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemi.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemi.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemi.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
11 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
12 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑈 ∈ 𝐸 ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
15 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
16 |
6 7
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
18 |
6 7
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
19 |
13 14 17 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
20 |
6 7 9
|
tendovalco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑈 ∈ 𝐸 ) ∧ ( ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑈 ‘ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ) = ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) ) |
21 |
10 11 12 19 15 20
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ) = ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) ) |
22 |
|
coass |
⊢ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
23 |
1 6 7
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
24 |
13 15 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
25 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
27 |
26
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( 𝐺 ∘ ( I ↾ 𝐵 ) ) ) |
28 |
1 6 7
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
29 |
13 14 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
30 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
31 |
|
fcoi1 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐵 → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
32 |
29 30 31
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
33 |
27 32
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = 𝐺 ) |
34 |
22 33
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = 𝐺 ) |
35 |
34
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ) = ( 𝑈 ‘ 𝐺 ) ) |
36 |
21 35
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) = ( 𝑈 ‘ 𝐺 ) ) |
37 |
36
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) ‘ 𝑃 ) = ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) ) |
38 |
6 7 9
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝑇 ) |
39 |
13 12 19 38
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝑇 ) |
40 |
6 7 9
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |
41 |
13 12 15 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |
42 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
43 |
2 5 6 7
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝑇 ∧ ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) ‘ 𝑃 ) = ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ‘ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ) ) |
44 |
13 39 41 42 43
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∘ ( 𝑈 ‘ 𝐹 ) ) ‘ 𝑃 ) = ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ‘ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ) ) |
45 |
37 44
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ‘ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ) ) |
46 |
2 5 6 7
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
47 |
41 46
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
48 |
1 2 3 4 5 6 7 8 9
|
cdlemi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) ∧ ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ‘ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ) ≤ ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
49 |
13 12 19 47 48
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑈 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ‘ ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ) ≤ ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
50 |
45 49
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) ≤ ( ( ( 𝑈 ‘ 𝐹 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |