Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemi.b |
|
2 |
|
cdlemi.l |
|
3 |
|
cdlemi.j |
|
4 |
|
cdlemi.m |
|
5 |
|
cdlemi.a |
|
6 |
|
cdlemi.h |
|
7 |
|
cdlemi.t |
|
8 |
|
cdlemi.r |
|
9 |
|
cdlemi.e |
|
10 |
|
cdlemi.s |
|
11 |
|
simp11l |
|
12 |
|
simp11r |
|
13 |
|
simp2l |
|
14 |
|
simp13 |
|
15 |
|
simp2r |
|
16 |
1 2 3 4 5 6 7 8 9
|
cdlemi1 |
|
17 |
11 12 13 14 15 16
|
syl221anc |
|
18 |
|
simp12 |
|
19 |
1 2 3 4 5 6 7 8 9
|
cdlemi2 |
|
20 |
11 12 13 18 14 15 19
|
syl231anc |
|
21 |
11
|
hllatd |
|
22 |
|
simp11 |
|
23 |
6 7 9
|
tendocl |
|
24 |
22 13 14 23
|
syl3anc |
|
25 |
|
simp2rl |
|
26 |
1 5
|
atbase |
|
27 |
25 26
|
syl |
|
28 |
1 6 7
|
ltrncl |
|
29 |
22 24 27 28
|
syl3anc |
|
30 |
1 6 7 8
|
trlcl |
|
31 |
22 14 30
|
syl2anc |
|
32 |
1 3
|
latjcl |
|
33 |
21 27 31 32
|
syl3anc |
|
34 |
6 7 9
|
tendocl |
|
35 |
22 13 18 34
|
syl3anc |
|
36 |
1 6 7
|
ltrncl |
|
37 |
22 35 27 36
|
syl3anc |
|
38 |
6 7
|
ltrncnv |
|
39 |
22 18 38
|
syl2anc |
|
40 |
6 7
|
ltrnco |
|
41 |
22 14 39 40
|
syl3anc |
|
42 |
1 6 7 8
|
trlcl |
|
43 |
22 41 42
|
syl2anc |
|
44 |
1 3
|
latjcl |
|
45 |
21 37 43 44
|
syl3anc |
|
46 |
1 2 4
|
latlem12 |
|
47 |
21 29 33 45 46
|
syl13anc |
|
48 |
17 20 47
|
mpbi2and |
|
49 |
|
hlatl |
|
50 |
11 49
|
syl |
|
51 |
2 5 6 7
|
ltrnat |
|
52 |
22 24 25 51
|
syl3anc |
|
53 |
2 5 6 7
|
ltrnel |
|
54 |
22 35 15 53
|
syl3anc |
|
55 |
1 2 3 4 5 6 7 8 9
|
cdlemi1 |
|
56 |
11 12 13 18 15 55
|
syl221anc |
|
57 |
15 54 56
|
3jca |
|
58 |
|
eqid |
|
59 |
1 2 3 4 5 6 7 8 58
|
cdlemh |
|
60 |
59
|
simpld |
|
61 |
57 60
|
syld3an2 |
|
62 |
2 5
|
atcmp |
|
63 |
50 52 61 62
|
syl3anc |
|
64 |
48 63
|
mpbid |
|
65 |
64 10
|
eqtr4di |
|