Metamath Proof Explorer


Theorem cdlemj1

Description: Part of proof of Lemma J of Crawley p. 118. (Contributed by NM, 19-Jun-2013)

Ref Expression
Hypotheses cdlemj.b B = Base K
cdlemj.h H = LHyp K
cdlemj.t T = LTrn K W
cdlemj.r R = trL K W
cdlemj.e E = TEndo K W
cdlemj.l ˙ = K
cdlemj.a A = Atoms K
Assertion cdlemj1 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U h p = V h p

Proof

Step Hyp Ref Expression
1 cdlemj.b B = Base K
2 cdlemj.h H = LHyp K
3 cdlemj.t T = LTrn K W
4 cdlemj.r R = trL K W
5 cdlemj.e E = TEndo K W
6 cdlemj.l ˙ = K
7 cdlemj.a A = Atoms K
8 simp123 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U F = V F
9 8 fveq1d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U F p = V F p
10 9 oveq1d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U F p join K R g F -1 = V F p join K R g F -1
11 10 oveq2d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W p join K R g meet K U F p join K R g F -1 = p join K R g meet K V F p join K R g F -1
12 simp11 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W K HL W H
13 simp131 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W F T
14 simp22 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W g T
15 simp121 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U E
16 simp33 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W p A ¬ p ˙ W
17 simp132 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W F I B
18 simp23 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W g I B
19 simp31 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W R F R g
20 eqid join K = join K
21 eqid meet K = meet K
22 eqid p join K R g meet K U F p join K R g F -1 = p join K R g meet K U F p join K R g F -1
23 1 6 20 21 7 2 3 4 5 22 cdlemi K HL W H F T g T U E p A ¬ p ˙ W F I B g I B R F R g U g p = p join K R g meet K U F p join K R g F -1
24 12 13 14 15 16 17 18 19 23 syl323anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U g p = p join K R g meet K U F p join K R g F -1
25 simp122 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W V E
26 eqid p join K R g meet K V F p join K R g F -1 = p join K R g meet K V F p join K R g F -1
27 1 6 20 21 7 2 3 4 5 26 cdlemi K HL W H F T g T V E p A ¬ p ˙ W F I B g I B R F R g V g p = p join K R g meet K V F p join K R g F -1
28 12 13 14 25 16 17 18 19 27 syl323anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W V g p = p join K R g meet K V F p join K R g F -1
29 11 24 28 3eqtr4d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U g p = V g p
30 29 oveq1d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U g p join K R h g -1 = V g p join K R h g -1
31 30 oveq2d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W p join K R h meet K U g p join K R h g -1 = p join K R h meet K V g p join K R h g -1
32 simp133 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W h T
33 simp21 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W h I B
34 simp32 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W R g R h
35 eqid p join K R h meet K U g p join K R h g -1 = p join K R h meet K U g p join K R h g -1
36 1 6 20 21 7 2 3 4 5 35 cdlemi K HL W H g T h T U E p A ¬ p ˙ W g I B h I B R g R h U h p = p join K R h meet K U g p join K R h g -1
37 12 14 32 15 16 18 33 34 36 syl323anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U h p = p join K R h meet K U g p join K R h g -1
38 eqid p join K R h meet K V g p join K R h g -1 = p join K R h meet K V g p join K R h g -1
39 1 6 20 21 7 2 3 4 5 38 cdlemi K HL W H g T h T V E p A ¬ p ˙ W g I B h I B R g R h V h p = p join K R h meet K V g p join K R h g -1
40 12 14 32 25 16 18 33 34 39 syl323anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W V h p = p join K R h meet K V g p join K R h g -1
41 31 37 40 3eqtr4d K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p A ¬ p ˙ W U h p = V h p