| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemj.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemj.h |
|- H = ( LHyp ` K ) |
| 3 |
|
cdlemj.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
cdlemj.r |
|- R = ( ( trL ` K ) ` W ) |
| 5 |
|
cdlemj.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 6 |
|
cdlemj.l |
|- .<_ = ( le ` K ) |
| 7 |
|
cdlemj.a |
|- A = ( Atoms ` K ) |
| 8 |
|
simp123 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( U ` F ) = ( V ` F ) ) |
| 9 |
8
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` F ) ` p ) = ( ( V ` F ) ` p ) ) |
| 10 |
9
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) = ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
| 12 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simp131 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> F e. T ) |
| 14 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> g e. T ) |
| 15 |
|
simp121 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> U e. E ) |
| 16 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( p e. A /\ -. p .<_ W ) ) |
| 17 |
|
simp132 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
| 18 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> g =/= ( _I |` B ) ) |
| 19 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( R ` F ) =/= ( R ` g ) ) |
| 20 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 21 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 22 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
| 23 |
1 6 20 21 7 2 3 4 5 22
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ g e. T ) /\ ( U e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ g =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` g ) ) ) -> ( ( U ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
| 24 |
12 13 14 15 16 17 18 19 23
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
| 25 |
|
simp122 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> V e. E ) |
| 26 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
| 27 |
1 6 20 21 7 2 3 4 5 26
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ g e. T ) /\ ( V e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ g =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` g ) ) ) -> ( ( V ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
| 28 |
12 13 14 25 16 17 18 19 27
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( V ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
| 29 |
11 24 28
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` g ) ` p ) = ( ( V ` g ) ` p ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) = ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
| 31 |
30
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
| 32 |
|
simp133 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> h e. T ) |
| 33 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> h =/= ( _I |` B ) ) |
| 34 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( R ` g ) =/= ( R ` h ) ) |
| 35 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
| 36 |
1 6 20 21 7 2 3 4 5 35
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ g e. T /\ h e. T ) /\ ( U e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( g =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` g ) =/= ( R ` h ) ) ) -> ( ( U ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
| 37 |
12 14 32 15 16 18 33 34 36
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
| 38 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
| 39 |
1 6 20 21 7 2 3 4 5 38
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ g e. T /\ h e. T ) /\ ( V e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( g =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` g ) =/= ( R ` h ) ) ) -> ( ( V ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
| 40 |
12 14 32 25 16 18 33 34 39
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( V ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
| 41 |
31 37 40
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` h ) ` p ) = ( ( V ` h ) ` p ) ) |