Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemj.b |
|- B = ( Base ` K ) |
2 |
|
cdlemj.h |
|- H = ( LHyp ` K ) |
3 |
|
cdlemj.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
cdlemj.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
cdlemj.e |
|- E = ( ( TEndo ` K ) ` W ) |
6 |
|
cdlemj.l |
|- .<_ = ( le ` K ) |
7 |
|
cdlemj.a |
|- A = ( Atoms ` K ) |
8 |
|
simp123 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( U ` F ) = ( V ` F ) ) |
9 |
8
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` F ) ` p ) = ( ( V ` F ) ` p ) ) |
10 |
9
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) = ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
11 |
10
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
12 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
13 |
|
simp131 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> F e. T ) |
14 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> g e. T ) |
15 |
|
simp121 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> U e. E ) |
16 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( p e. A /\ -. p .<_ W ) ) |
17 |
|
simp132 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
18 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> g =/= ( _I |` B ) ) |
19 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( R ` F ) =/= ( R ` g ) ) |
20 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
21 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
22 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
23 |
1 6 20 21 7 2 3 4 5 22
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ g e. T ) /\ ( U e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ g =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` g ) ) ) -> ( ( U ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
24 |
12 13 14 15 16 17 18 19 23
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( U ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
25 |
|
simp122 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> V e. E ) |
26 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) |
27 |
1 6 20 21 7 2 3 4 5 26
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ g e. T ) /\ ( V e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ g =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` g ) ) ) -> ( ( V ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
28 |
12 13 14 25 16 17 18 19 27
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( V ` g ) ` p ) = ( ( p ( join ` K ) ( R ` g ) ) ( meet ` K ) ( ( ( V ` F ) ` p ) ( join ` K ) ( R ` ( g o. `' F ) ) ) ) ) |
29 |
11 24 28
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` g ) ` p ) = ( ( V ` g ) ` p ) ) |
30 |
29
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) = ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
31 |
30
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
32 |
|
simp133 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> h e. T ) |
33 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> h =/= ( _I |` B ) ) |
34 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( R ` g ) =/= ( R ` h ) ) |
35 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
36 |
1 6 20 21 7 2 3 4 5 35
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ g e. T /\ h e. T ) /\ ( U e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( g =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` g ) =/= ( R ` h ) ) ) -> ( ( U ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
37 |
12 14 32 15 16 18 33 34 36
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( U ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
38 |
|
eqid |
|- ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) |
39 |
1 6 20 21 7 2 3 4 5 38
|
cdlemi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ g e. T /\ h e. T ) /\ ( V e. E /\ ( p e. A /\ -. p .<_ W ) ) /\ ( g =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` g ) =/= ( R ` h ) ) ) -> ( ( V ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
40 |
12 14 32 25 16 18 33 34 39
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( V ` h ) ` p ) = ( ( p ( join ` K ) ( R ` h ) ) ( meet ` K ) ( ( ( V ` g ) ` p ) ( join ` K ) ( R ` ( h o. `' g ) ) ) ) ) |
41 |
31 37 40
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ ( U ` F ) = ( V ` F ) ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ h e. T ) ) /\ ( h =/= ( _I |` B ) /\ g e. T /\ g =/= ( _I |` B ) ) /\ ( ( R ` F ) =/= ( R ` g ) /\ ( R ` g ) =/= ( R ` h ) /\ ( p e. A /\ -. p .<_ W ) ) ) -> ( ( U ` h ) ` p ) = ( ( V ` h ) ` p ) ) |