| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemi.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemi.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemi.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemi.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | cdlemi.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | cdlemi.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | cdlemi.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 8 |  | cdlemi.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 9 |  | cdlemi.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 10 |  | cdlemi.s |  |-  S = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) | 
						
							| 11 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. HL ) | 
						
							| 12 |  | simp11r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> W e. H ) | 
						
							| 13 |  | simp2l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> U e. E ) | 
						
							| 14 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) | 
						
							| 15 |  | simp2r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | cdlemi1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( U ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) ) | 
						
							| 17 | 11 12 13 14 15 16 | syl221anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) ) | 
						
							| 18 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 | cdlemi2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) | 
						
							| 20 | 11 12 13 18 14 15 19 | syl231anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) | 
						
							| 21 | 11 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. Lat ) | 
						
							| 22 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 23 | 6 7 9 | tendocl |  |-  ( ( ( K e. HL /\ W e. H ) /\ U e. E /\ G e. T ) -> ( U ` G ) e. T ) | 
						
							| 24 | 22 13 14 23 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( U ` G ) e. T ) | 
						
							| 25 |  | simp2rl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. A ) | 
						
							| 26 | 1 5 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. B ) | 
						
							| 28 | 1 6 7 | ltrncl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U ` G ) e. T /\ P e. B ) -> ( ( U ` G ) ` P ) e. B ) | 
						
							| 29 | 22 24 27 28 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) e. B ) | 
						
							| 30 | 1 6 7 8 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. B ) | 
						
							| 31 | 22 14 30 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) e. B ) | 
						
							| 32 | 1 3 | latjcl |  |-  ( ( K e. Lat /\ P e. B /\ ( R ` G ) e. B ) -> ( P .\/ ( R ` G ) ) e. B ) | 
						
							| 33 | 21 27 31 32 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P .\/ ( R ` G ) ) e. B ) | 
						
							| 34 | 6 7 9 | tendocl |  |-  ( ( ( K e. HL /\ W e. H ) /\ U e. E /\ F e. T ) -> ( U ` F ) e. T ) | 
						
							| 35 | 22 13 18 34 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( U ` F ) e. T ) | 
						
							| 36 | 1 6 7 | ltrncl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U ` F ) e. T /\ P e. B ) -> ( ( U ` F ) ` P ) e. B ) | 
						
							| 37 | 22 35 27 36 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` F ) ` P ) e. B ) | 
						
							| 38 | 6 7 | ltrncnv |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) | 
						
							| 39 | 22 18 38 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> `' F e. T ) | 
						
							| 40 | 6 7 | ltrnco |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ `' F e. T ) -> ( G o. `' F ) e. T ) | 
						
							| 41 | 22 14 39 40 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G o. `' F ) e. T ) | 
						
							| 42 | 1 6 7 8 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( G o. `' F ) e. T ) -> ( R ` ( G o. `' F ) ) e. B ) | 
						
							| 43 | 22 41 42 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) e. B ) | 
						
							| 44 | 1 3 | latjcl |  |-  ( ( K e. Lat /\ ( ( U ` F ) ` P ) e. B /\ ( R ` ( G o. `' F ) ) e. B ) -> ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) | 
						
							| 45 | 21 37 43 44 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) | 
						
							| 46 | 1 2 4 | latlem12 |  |-  ( ( K e. Lat /\ ( ( ( U ` G ) ` P ) e. B /\ ( P .\/ ( R ` G ) ) e. B /\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) ) -> ( ( ( ( U ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) /\ ( ( U ` G ) ` P ) .<_ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( ( U ` G ) ` P ) .<_ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) | 
						
							| 47 | 21 29 33 45 46 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( ( U ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) /\ ( ( U ` G ) ` P ) .<_ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( ( U ` G ) ` P ) .<_ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) | 
						
							| 48 | 17 20 47 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 49 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 50 | 11 49 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. AtLat ) | 
						
							| 51 | 2 5 6 7 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U ` G ) e. T /\ P e. A ) -> ( ( U ` G ) ` P ) e. A ) | 
						
							| 52 | 22 24 25 51 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) e. A ) | 
						
							| 53 | 2 5 6 7 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U ` F ) e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( U ` F ) ` P ) e. A /\ -. ( ( U ` F ) ` P ) .<_ W ) ) | 
						
							| 54 | 22 35 15 53 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( U ` F ) ` P ) e. A /\ -. ( ( U ` F ) ` P ) .<_ W ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 9 | cdlemi1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( U ` F ) ` P ) .<_ ( P .\/ ( R ` F ) ) ) | 
						
							| 56 | 11 12 13 18 15 55 | syl221anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` F ) ` P ) .<_ ( P .\/ ( R ` F ) ) ) | 
						
							| 57 | 15 54 56 | 3jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( ( ( U ` F ) ` P ) e. A /\ -. ( ( U ` F ) ` P ) .<_ W ) /\ ( ( U ` F ) ` P ) .<_ ( P .\/ ( R ` F ) ) ) ) | 
						
							| 58 |  | eqid |  |-  ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 58 | cdlemh |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( ( U ` F ) ` P ) e. A /\ -. ( ( U ` F ) ` P ) .<_ W ) /\ ( ( U ` F ) ` P ) .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) ) | 
						
							| 60 | 59 | simpld |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( ( U ` F ) ` P ) e. A /\ -. ( ( U ` F ) ` P ) .<_ W ) /\ ( ( U ` F ) ` P ) .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A ) | 
						
							| 61 | 57 60 | syld3an2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A ) | 
						
							| 62 | 2 5 | atcmp |  |-  ( ( K e. AtLat /\ ( ( U ` G ) ` P ) e. A /\ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A ) -> ( ( ( U ` G ) ` P ) .<_ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( ( U ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) | 
						
							| 63 | 50 52 61 62 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( U ` G ) ` P ) .<_ ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( ( U ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) | 
						
							| 64 | 48 63 | mpbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( U ` F ) ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 65 | 64 10 | eqtr4di |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( U e. E /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( U ` G ) ` P ) = S ) |