Metamath Proof Explorer


Theorem cdlemh1

Description: Part of proof of Lemma H of Crawley p. 118. (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses cdlemh.b B = Base K
cdlemh.l ˙ = K
cdlemh.j ˙ = join K
cdlemh.m ˙ = meet K
cdlemh.a A = Atoms K
cdlemh.h H = LHyp K
cdlemh.t T = LTrn K W
cdlemh.r R = trL K W
cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
Assertion cdlemh1 K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G S ˙ R G F -1 = Q ˙ R G F -1

Proof

Step Hyp Ref Expression
1 cdlemh.b B = Base K
2 cdlemh.l ˙ = K
3 cdlemh.j ˙ = join K
4 cdlemh.m ˙ = meet K
5 cdlemh.a A = Atoms K
6 cdlemh.h H = LHyp K
7 cdlemh.t T = LTrn K W
8 cdlemh.r R = trL K W
9 cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
10 9 oveq1i S ˙ R G F -1 = P ˙ R G ˙ Q ˙ R G F -1 ˙ R G F -1
11 simp11l K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G K HL
12 simp11 K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G K HL W H
13 simp13 K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G G T
14 simp12 K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G F T
15 simp3r K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R F R G
16 15 necomd K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G R F
17 5 6 7 8 trlcocnvat K HL W H G T F T R G R F R G F -1 A
18 12 13 14 16 17 syl121anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G F -1 A
19 11 hllatd K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G K Lat
20 simp2l K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P A
21 1 5 atbase P A P B
22 20 21 syl K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P B
23 1 6 7 8 trlcl K HL W H G T R G B
24 12 13 23 syl2anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G B
25 1 3 latjcl K Lat P B R G B P ˙ R G B
26 19 22 24 25 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G B
27 simp2r K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q A
28 1 3 5 hlatjcl K HL Q A R G F -1 A Q ˙ R G F -1 B
29 11 27 18 28 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q ˙ R G F -1 B
30 2 3 5 hlatlej2 K HL Q A R G F -1 A R G F -1 ˙ Q ˙ R G F -1
31 11 27 18 30 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G F -1 ˙ Q ˙ R G F -1
32 1 2 3 4 5 atmod4i1 K HL R G F -1 A P ˙ R G B Q ˙ R G F -1 B R G F -1 ˙ Q ˙ R G F -1 P ˙ R G ˙ Q ˙ R G F -1 ˙ R G F -1 = P ˙ R G ˙ R G F -1 ˙ Q ˙ R G F -1
33 11 18 26 29 31 32 syl131anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ Q ˙ R G F -1 ˙ R G F -1 = P ˙ R G ˙ R G F -1 ˙ Q ˙ R G F -1
34 6 7 ltrncnv K HL W H F T F -1 T
35 12 14 34 syl2anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G F -1 T
36 3 6 7 8 trljco2 K HL W H G T F -1 T R G ˙ R G F -1 = R F -1 ˙ R G F -1
37 12 13 35 36 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G ˙ R G F -1 = R F -1 ˙ R G F -1
38 6 7 8 trlcnv K HL W H F T R F -1 = R F
39 12 14 38 syl2anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R F -1 = R F
40 39 oveq1d K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R F -1 ˙ R G F -1 = R F ˙ R G F -1
41 37 40 eqtrd K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G ˙ R G F -1 = R F ˙ R G F -1
42 41 oveq2d K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ R G F -1 = P ˙ R F ˙ R G F -1
43 6 7 ltrnco K HL W H G T F -1 T G F -1 T
44 12 13 35 43 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G G F -1 T
45 1 6 7 8 trlcl K HL W H G F -1 T R G F -1 B
46 12 44 45 syl2anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R G F -1 B
47 1 3 latjass K Lat P B R G B R G F -1 B P ˙ R G ˙ R G F -1 = P ˙ R G ˙ R G F -1
48 19 22 24 46 47 syl13anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ R G F -1 = P ˙ R G ˙ R G F -1
49 1 6 7 8 trlcl K HL W H F T R F B
50 12 14 49 syl2anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G R F B
51 1 3 latjass K Lat P B R F B R G F -1 B P ˙ R F ˙ R G F -1 = P ˙ R F ˙ R G F -1
52 19 22 50 46 51 syl13anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R F ˙ R G F -1 = P ˙ R F ˙ R G F -1
53 42 48 52 3eqtr4d K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ R G F -1 = P ˙ R F ˙ R G F -1
54 53 oveq1d K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ R G F -1 ˙ Q ˙ R G F -1 = P ˙ R F ˙ R G F -1 ˙ Q ˙ R G F -1
55 simp3l K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q ˙ P ˙ R F
56 1 5 atbase Q A Q B
57 27 56 syl K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q B
58 1 3 latjcl K Lat P B R F B P ˙ R F B
59 19 22 50 58 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R F B
60 1 2 3 latjlej1 K Lat Q B P ˙ R F B R G F -1 B Q ˙ P ˙ R F Q ˙ R G F -1 ˙ P ˙ R F ˙ R G F -1
61 19 57 59 46 60 syl13anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q ˙ P ˙ R F Q ˙ R G F -1 ˙ P ˙ R F ˙ R G F -1
62 55 61 mpd K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q ˙ R G F -1 ˙ P ˙ R F ˙ R G F -1
63 1 3 latjcl K Lat P ˙ R F B R G F -1 B P ˙ R F ˙ R G F -1 B
64 19 59 46 63 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R F ˙ R G F -1 B
65 1 2 4 latleeqm2 K Lat Q ˙ R G F -1 B P ˙ R F ˙ R G F -1 B Q ˙ R G F -1 ˙ P ˙ R F ˙ R G F -1 P ˙ R F ˙ R G F -1 ˙ Q ˙ R G F -1 = Q ˙ R G F -1
66 19 29 64 65 syl3anc K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G Q ˙ R G F -1 ˙ P ˙ R F ˙ R G F -1 P ˙ R F ˙ R G F -1 ˙ Q ˙ R G F -1 = Q ˙ R G F -1
67 62 66 mpbid K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R F ˙ R G F -1 ˙ Q ˙ R G F -1 = Q ˙ R G F -1
68 33 54 67 3eqtrd K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G P ˙ R G ˙ Q ˙ R G F -1 ˙ R G F -1 = Q ˙ R G F -1
69 10 68 syl5eq K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G S ˙ R G F -1 = Q ˙ R G F -1