| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemh.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemh.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemh.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemh.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cdlemh.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
cdlemh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
cdlemh.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
cdlemh.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
cdlemh.s |
⊢ 𝑆 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 10 |
9
|
oveq1i |
⊢ ( 𝑆 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) |
| 11 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐾 ∈ HL ) |
| 12 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 13 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 ∈ 𝑇 ) |
| 14 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐹 ∈ 𝑇 ) |
| 15 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
| 16 |
15
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 17 |
5 6 7 8
|
trlcocnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) |
| 18 |
12 13 14 16 17
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) |
| 19 |
11
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐾 ∈ Lat ) |
| 20 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 21 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑃 ∈ 𝐵 ) |
| 23 |
1 6 7 8
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ 𝐵 ) |
| 24 |
12 13 23
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ 𝐵 ) |
| 25 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐺 ) ∈ 𝐵 ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ) |
| 26 |
19 22 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ) |
| 27 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 28 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) → ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 29 |
11 27 18 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 30 |
2 3 5
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 31 |
11 27 18 30
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 32 |
1 2 3 4 5
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ∧ ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 33 |
11 18 26 29 31 32
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 34 |
6 7
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
| 35 |
12 14 34
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ◡ 𝐹 ∈ 𝑇 ) |
| 36 |
3 6 7 8
|
trljco2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑅 ‘ ◡ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 37 |
12 13 35 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑅 ‘ ◡ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 38 |
6 7 8
|
trlcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
| 39 |
12 14 38
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑅 ‘ ◡ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 41 |
37 40
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 43 |
6 7
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 44 |
12 13 35 43
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 45 |
1 6 7 8
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
| 46 |
12 44 45
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
| 47 |
1 3
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐺 ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 48 |
19 22 24 46 47
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 49 |
1 6 7 8
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
| 50 |
12 14 49
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
| 51 |
1 3
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 52 |
19 22 50 46 51
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑃 ∨ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 53 |
42 48 52
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 55 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
| 56 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 57 |
27 56
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑄 ∈ 𝐵 ) |
| 58 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ 𝐵 ) |
| 59 |
19 22 50 58
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ 𝐵 ) |
| 60 |
1 2 3
|
latjlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐵 ∧ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 61 |
19 57 59 46 60
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 62 |
55 61
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 63 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 64 |
19 59 46 63
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 65 |
1 2 4
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ∧ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) → ( ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ↔ ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 66 |
19 29 64 65
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ↔ ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) |
| 67 |
62 66
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 68 |
33 54 67
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 69 |
10 68
|
eqtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑆 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( 𝑄 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |