Metamath Proof Explorer


Theorem llni2

Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012)

Ref Expression
Hypotheses llni2.j ˙ = join K
llni2.a A = Atoms K
llni2.n N = LLines K
Assertion llni2 K HL P A Q A P Q P ˙ Q N

Proof

Step Hyp Ref Expression
1 llni2.j ˙ = join K
2 llni2.a A = Atoms K
3 llni2.n N = LLines K
4 simpl2 K HL P A Q A P Q P A
5 simpl3 K HL P A Q A P Q Q A
6 simpr K HL P A Q A P Q P Q
7 eqidd K HL P A Q A P Q P ˙ Q = P ˙ Q
8 neeq1 r = P r s P s
9 oveq1 r = P r ˙ s = P ˙ s
10 9 eqeq2d r = P P ˙ Q = r ˙ s P ˙ Q = P ˙ s
11 8 10 anbi12d r = P r s P ˙ Q = r ˙ s P s P ˙ Q = P ˙ s
12 neeq2 s = Q P s P Q
13 oveq2 s = Q P ˙ s = P ˙ Q
14 13 eqeq2d s = Q P ˙ Q = P ˙ s P ˙ Q = P ˙ Q
15 12 14 anbi12d s = Q P s P ˙ Q = P ˙ s P Q P ˙ Q = P ˙ Q
16 11 15 rspc2ev P A Q A P Q P ˙ Q = P ˙ Q r A s A r s P ˙ Q = r ˙ s
17 4 5 6 7 16 syl112anc K HL P A Q A P Q r A s A r s P ˙ Q = r ˙ s
18 simpl1 K HL P A Q A P Q K HL
19 eqid Base K = Base K
20 19 1 2 hlatjcl K HL P A Q A P ˙ Q Base K
21 20 adantr K HL P A Q A P Q P ˙ Q Base K
22 19 1 2 3 islln3 K HL P ˙ Q Base K P ˙ Q N r A s A r s P ˙ Q = r ˙ s
23 18 21 22 syl2anc K HL P A Q A P Q P ˙ Q N r A s A r s P ˙ Q = r ˙ s
24 17 23 mpbird K HL P A Q A P Q P ˙ Q N