Metamath Proof Explorer


Theorem llnneat

Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012)

Ref Expression
Hypotheses llnneat.a A=AtomsK
llnneat.n N=LLinesK
Assertion llnneat KHLXN¬XA

Proof

Step Hyp Ref Expression
1 llnneat.a A=AtomsK
2 llnneat.n N=LLinesK
3 hllat KHLKLat
4 eqid BaseK=BaseK
5 4 2 llnbase XNXBaseK
6 eqid K=K
7 4 6 latref KLatXBaseKXKX
8 3 5 7 syl2an KHLXNXKX
9 6 1 2 llnnleat KHLXNXA¬XKX
10 9 3expia KHLXNXA¬XKX
11 8 10 mt2d KHLXN¬XA