Metamath Proof Explorer


Theorem 2atneat

Description: The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012)

Ref Expression
Hypotheses 2atneat.j ˙=joinK
2atneat.a A=AtomsK
Assertion 2atneat KHLPAQAPQ¬P˙QA

Proof

Step Hyp Ref Expression
1 2atneat.j ˙=joinK
2 2atneat.a A=AtomsK
3 simpl KHLPAQAPQKHL
4 simpr1 KHLPAQAPQPA
5 simpr2 KHLPAQAPQQA
6 simpr3 KHLPAQAPQPQ
7 eqid LLinesK=LLinesK
8 1 2 7 llni2 KHLPAQAPQP˙QLLinesK
9 3 4 5 6 8 syl31anc KHLPAQAPQP˙QLLinesK
10 2 7 llnneat KHLP˙QLLinesK¬P˙QA
11 9 10 syldan KHLPAQAPQ¬P˙QA