| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemk.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemk.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemk.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemk.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemk.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemk.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemk.m |  |-  ./\ = ( meet ` K ) | 
						
							| 9 |  | cdlemk.s |  |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) | 
						
							| 10 |  | cdlemk.v |  |-  V = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) | 
						
							| 11 |  | simp1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) ) | 
						
							| 12 |  | simp2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) | 
						
							| 13 |  | simp311 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) ) | 
						
							| 14 |  | simp312 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> G =/= ( _I |` B ) ) | 
						
							| 15 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( R ` G ) =/= ( R ` F ) ) | 
						
							| 16 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( R ` X ) =/= ( R ` F ) ) | 
						
							| 17 | 15 16 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 | cdlemk6 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) | 
						
							| 19 | 11 12 13 14 17 18 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) | 
						
							| 20 |  | simp21l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> N e. T ) | 
						
							| 21 |  | simp22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 22 |  | simp23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( R ` F ) = ( R ` N ) ) | 
						
							| 23 | 20 21 22 | 3jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 | cdlemksv2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 25 | 11 23 13 14 15 24 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 26 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 27 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> G e. T ) | 
						
							| 28 | 2 3 4 5 6 7 | trljat1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 29 | 26 27 21 28 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 31 | 25 30 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) | 
						
							| 32 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> K e. HL ) | 
						
							| 33 | 32 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> K e. Lat ) | 
						
							| 34 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> F e. T ) | 
						
							| 35 |  | simp21r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> X e. T ) | 
						
							| 36 | 26 34 35 | 3jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) ) | 
						
							| 37 |  | simp313 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> X =/= ( _I |` B ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 | cdlemksat |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) e. A ) | 
						
							| 39 | 36 23 13 37 16 38 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) e. A ) | 
						
							| 40 | 1 4 | atbase |  |-  ( ( ( S ` X ) ` P ) e. A -> ( ( S ` X ) ` P ) e. B ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) e. B ) | 
						
							| 42 |  | simp11r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> W e. H ) | 
						
							| 43 |  | simp22l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> P e. A ) | 
						
							| 44 | 1 2 3 4 5 6 7 8 10 | cdlemkvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ P e. A ) -> V e. B ) | 
						
							| 45 | 32 42 34 27 35 43 44 | syl231anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> V e. B ) | 
						
							| 46 | 1 3 | latjcom |  |-  ( ( K e. Lat /\ ( ( S ` X ) ` P ) e. B /\ V e. B ) -> ( ( ( S ` X ) ` P ) .\/ V ) = ( V .\/ ( ( S ` X ) ` P ) ) ) | 
						
							| 47 | 33 41 45 46 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( ( S ` X ) ` P ) .\/ V ) = ( V .\/ ( ( S ` X ) ` P ) ) ) | 
						
							| 48 | 10 | a1i |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> V = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) ) | 
						
							| 49 | 1 2 3 4 5 6 7 8 9 | cdlemksv2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ X e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) = ( ( P .\/ ( R ` X ) ) ./\ ( ( N ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) ) | 
						
							| 50 | 36 23 13 37 16 49 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) = ( ( P .\/ ( R ` X ) ) ./\ ( ( N ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) ) | 
						
							| 51 | 2 3 4 5 6 7 | trljat1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` X ) ) = ( P .\/ ( X ` P ) ) ) | 
						
							| 52 | 26 35 21 51 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` X ) ) = ( P .\/ ( X ` P ) ) ) | 
						
							| 53 | 2 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ P e. A ) -> ( X ` P ) e. A ) | 
						
							| 54 | 26 35 43 53 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( X ` P ) e. A ) | 
						
							| 55 | 3 4 | hlatjcom |  |-  ( ( K e. HL /\ ( X ` P ) e. A /\ P e. A ) -> ( ( X ` P ) .\/ P ) = ( P .\/ ( X ` P ) ) ) | 
						
							| 56 | 32 54 43 55 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( X ` P ) .\/ P ) = ( P .\/ ( X ` P ) ) ) | 
						
							| 57 | 52 56 | eqtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` X ) ) = ( ( X ` P ) .\/ P ) ) | 
						
							| 58 | 2 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A ) | 
						
							| 59 | 26 20 43 58 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A ) | 
						
							| 60 | 35 34 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( X e. T /\ F e. T ) ) | 
						
							| 61 | 4 5 6 7 | trlcocnvat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ F e. T ) /\ ( R ` X ) =/= ( R ` F ) ) -> ( R ` ( X o. `' F ) ) e. A ) | 
						
							| 62 | 26 60 16 61 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( R ` ( X o. `' F ) ) e. A ) | 
						
							| 63 | 3 4 | hlatjcom |  |-  ( ( K e. HL /\ ( N ` P ) e. A /\ ( R ` ( X o. `' F ) ) e. A ) -> ( ( N ` P ) .\/ ( R ` ( X o. `' F ) ) ) = ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) | 
						
							| 64 | 32 59 62 63 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( N ` P ) .\/ ( R ` ( X o. `' F ) ) ) = ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) | 
						
							| 65 | 57 64 | oveq12d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( R ` X ) ) ./\ ( ( N ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) = ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) | 
						
							| 66 | 50 65 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` X ) ` P ) = ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) | 
						
							| 67 | 48 66 | oveq12d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( V .\/ ( ( S ` X ) ` P ) ) = ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) | 
						
							| 68 | 47 67 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( ( S ` X ) ` P ) .\/ V ) = ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) | 
						
							| 69 | 19 31 68 | 3brtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ X =/= ( _I |` B ) ) /\ ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) .<_ ( ( ( S ` X ) ` P ) .\/ V ) ) |