Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
9 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> F =/= ( _I |` B ) ) |
10 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> G =/= ( _I |` B ) ) |
11 |
|
simp33l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
12 |
9 10 11
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) |
13 |
1 2 3 4 5 6 7 8
|
cdlemk5 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( P .\/ ( N ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) |
14 |
12 13
|
syld3an3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( ( P .\/ ( N ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) |
15 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> K e. HL ) |
16 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> P e. A ) |
17 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
18 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> G e. T ) |
19 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
20 |
17 18 16 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( G ` P ) e. A ) |
21 |
|
simp21r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> X e. T ) |
22 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ P e. A ) -> ( X ` P ) e. A ) |
23 |
17 21 16 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( X ` P ) e. A ) |
24 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> N e. T ) |
25 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. A ) -> ( N ` P ) e. A ) |
26 |
17 24 16 25
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( N ` P ) e. A ) |
27 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> F e. T ) |
28 |
4 5 6 7
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( R ` G ) =/= ( R ` F ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
29 |
17 18 27 11 28
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
30 |
|
simp33r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( R ` X ) =/= ( R ` F ) ) |
31 |
4 5 6 7
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ F e. T ) /\ ( R ` X ) =/= ( R ` F ) ) -> ( R ` ( X o. `' F ) ) e. A ) |
32 |
17 21 27 30 31
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( R ` ( X o. `' F ) ) e. A ) |
33 |
2 3 8 4
|
dalaw |
|- ( ( K e. HL /\ ( P e. A /\ ( G ` P ) e. A /\ ( X ` P ) e. A ) /\ ( ( N ` P ) e. A /\ ( R ` ( G o. `' F ) ) e. A /\ ( R ` ( X o. `' F ) ) e. A ) ) -> ( ( ( P .\/ ( N ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) ) |
34 |
15 16 20 23 26 29 32 33
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( ( ( P .\/ ( N ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) ) |
35 |
14 34
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( N e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( R ` X ) =/= ( R ` F ) ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' F ) ) .\/ ( R ` ( X o. `' F ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' F ) ) .\/ ( N ` P ) ) ) ) ) |