Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
|
cdlemk.s |
|
10 |
|
cdlemk.v |
|
11 |
|
simp1 |
|
12 |
|
simp2 |
|
13 |
|
simp311 |
|
14 |
|
simp312 |
|
15 |
|
simp32 |
|
16 |
|
simp33 |
|
17 |
15 16
|
jca |
|
18 |
1 2 3 4 5 6 7 8
|
cdlemk6 |
|
19 |
11 12 13 14 17 18
|
syl113anc |
|
20 |
|
simp21l |
|
21 |
|
simp22 |
|
22 |
|
simp23 |
|
23 |
20 21 22
|
3jca |
|
24 |
1 2 3 4 5 6 7 8 9
|
cdlemksv2 |
|
25 |
11 23 13 14 15 24
|
syl113anc |
|
26 |
|
simp11 |
|
27 |
|
simp13 |
|
28 |
2 3 4 5 6 7
|
trljat1 |
|
29 |
26 27 21 28
|
syl3anc |
|
30 |
29
|
oveq1d |
|
31 |
25 30
|
eqtrd |
|
32 |
|
simp11l |
|
33 |
32
|
hllatd |
|
34 |
|
simp12 |
|
35 |
|
simp21r |
|
36 |
26 34 35
|
3jca |
|
37 |
|
simp313 |
|
38 |
1 2 3 4 5 6 7 8 9
|
cdlemksat |
|
39 |
36 23 13 37 16 38
|
syl113anc |
|
40 |
1 4
|
atbase |
|
41 |
39 40
|
syl |
|
42 |
|
simp11r |
|
43 |
|
simp22l |
|
44 |
1 2 3 4 5 6 7 8 10
|
cdlemkvcl |
|
45 |
32 42 34 27 35 43 44
|
syl231anc |
|
46 |
1 3
|
latjcom |
|
47 |
33 41 45 46
|
syl3anc |
|
48 |
10
|
a1i |
|
49 |
1 2 3 4 5 6 7 8 9
|
cdlemksv2 |
|
50 |
36 23 13 37 16 49
|
syl113anc |
|
51 |
2 3 4 5 6 7
|
trljat1 |
|
52 |
26 35 21 51
|
syl3anc |
|
53 |
2 4 5 6
|
ltrnat |
|
54 |
26 35 43 53
|
syl3anc |
|
55 |
3 4
|
hlatjcom |
|
56 |
32 54 43 55
|
syl3anc |
|
57 |
52 56
|
eqtr4d |
|
58 |
2 4 5 6
|
ltrnat |
|
59 |
26 20 43 58
|
syl3anc |
|
60 |
35 34
|
jca |
|
61 |
4 5 6 7
|
trlcocnvat |
|
62 |
26 60 16 61
|
syl3anc |
|
63 |
3 4
|
hlatjcom |
|
64 |
32 59 62 63
|
syl3anc |
|
65 |
57 64
|
oveq12d |
|
66 |
50 65
|
eqtrd |
|
67 |
48 66
|
oveq12d |
|
68 |
47 67
|
eqtrd |
|
69 |
19 31 68
|
3brtr4d |
|