Metamath Proof Explorer


Theorem cdlemk7

Description: Part of proof of Lemma K of Crawley p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk.v V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
Assertion cdlemk7 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P ˙ S X P ˙ V

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk.v V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
11 simp1 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL W H F T G T
12 simp2 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N T X T P A ¬ P ˙ W R F = R N
13 simp311 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F F I B
14 simp312 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F G I B
15 simp32 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R G R F
16 simp33 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R X R F
17 15 16 jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R G R F R X R F
18 1 2 3 4 5 6 7 8 cdlemk6 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
19 11 12 13 14 17 18 syl113anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
20 simp21l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N T
21 simp22 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P A ¬ P ˙ W
22 simp23 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R F = R N
23 20 21 22 3jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N T P A ¬ P ˙ W R F = R N
24 1 2 3 4 5 6 7 8 9 cdlemksv2 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P = P ˙ R G ˙ N P ˙ R G F -1
25 11 23 13 14 15 24 syl113anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P = P ˙ R G ˙ N P ˙ R G F -1
26 simp11 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL W H
27 simp13 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F G T
28 2 3 4 5 6 7 trljat1 K HL W H G T P A ¬ P ˙ W P ˙ R G = P ˙ G P
29 26 27 21 28 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ R G = P ˙ G P
30 29 oveq1d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ R G ˙ N P ˙ R G F -1 = P ˙ G P ˙ N P ˙ R G F -1
31 25 30 eqtrd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P = P ˙ G P ˙ N P ˙ R G F -1
32 simp11l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL
33 32 hllatd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K Lat
34 simp12 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F F T
35 simp21r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X T
36 26 34 35 3jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL W H F T X T
37 simp313 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X I B
38 1 2 3 4 5 6 7 8 9 cdlemksat K HL W H F T X T N T P A ¬ P ˙ W R F = R N F I B X I B R X R F S X P A
39 36 23 13 37 16 38 syl113anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P A
40 1 4 atbase S X P A S X P B
41 39 40 syl K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P B
42 simp11r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F W H
43 simp22l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P A
44 1 2 3 4 5 6 7 8 10 cdlemkvcl K HL W H F T G T X T P A V B
45 32 42 34 27 35 43 44 syl231anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V B
46 1 3 latjcom K Lat S X P B V B S X P ˙ V = V ˙ S X P
47 33 41 45 46 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P ˙ V = V ˙ S X P
48 10 a1i K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
49 1 2 3 4 5 6 7 8 9 cdlemksv2 K HL W H F T X T N T P A ¬ P ˙ W R F = R N F I B X I B R X R F S X P = P ˙ R X ˙ N P ˙ R X F -1
50 36 23 13 37 16 49 syl113anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P = P ˙ R X ˙ N P ˙ R X F -1
51 2 3 4 5 6 7 trljat1 K HL W H X T P A ¬ P ˙ W P ˙ R X = P ˙ X P
52 26 35 21 51 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ R X = P ˙ X P
53 2 4 5 6 ltrnat K HL W H X T P A X P A
54 26 35 43 53 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X P A
55 3 4 hlatjcom K HL X P A P A X P ˙ P = P ˙ X P
56 32 54 43 55 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X P ˙ P = P ˙ X P
57 52 56 eqtr4d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ R X = X P ˙ P
58 2 4 5 6 ltrnat K HL W H N T P A N P A
59 26 20 43 58 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N P A
60 35 34 jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X T F T
61 4 5 6 7 trlcocnvat K HL W H X T F T R X R F R X F -1 A
62 26 60 16 61 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R X F -1 A
63 3 4 hlatjcom K HL N P A R X F -1 A N P ˙ R X F -1 = R X F -1 ˙ N P
64 32 59 62 63 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N P ˙ R X F -1 = R X F -1 ˙ N P
65 57 64 oveq12d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P ˙ R X ˙ N P ˙ R X F -1 = X P ˙ P ˙ R X F -1 ˙ N P
66 50 65 eqtrd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P = X P ˙ P ˙ R X F -1 ˙ N P
67 48 66 oveq12d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V ˙ S X P = G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
68 47 67 eqtrd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P ˙ V = G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
69 19 31 68 3brtr4d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P ˙ S X P ˙ V