Metamath Proof Explorer


Theorem cdlemk11

Description: Part of proof of Lemma K of Crawley p. 118. Eq. 3, line 8, p. 119. (Contributed by NM, 29-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk.v V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
Assertion cdlemk11 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P ˙ S X P ˙ R X G -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk.v V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
11 simp11l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL
12 11 hllatd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K Lat
13 simp1 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL W H F T G T
14 simp21l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F N T
15 simp22 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P A ¬ P ˙ W
16 simp23 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R F = R N
17 simp311 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F F I B
18 simp312 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F G I B
19 simp32 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R G R F
20 1 2 3 4 5 6 7 8 9 cdlemksat K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P A
21 13 14 15 16 17 18 19 20 syl133anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P A
22 1 4 atbase S G P A S G P B
23 21 22 syl K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P B
24 simp11 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F K HL W H
25 simp12 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F F T
26 simp21r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X T
27 simp313 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X I B
28 simp33 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R X R F
29 1 2 3 4 5 6 7 8 9 cdlemksat K HL W H F T X T N T P A ¬ P ˙ W R F = R N F I B X I B R X R F S X P A
30 24 25 26 14 15 16 17 27 28 29 syl333anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P A
31 1 4 atbase S X P A S X P B
32 30 31 syl K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P B
33 simp11r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F W H
34 simp13 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F G T
35 simp22l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F P A
36 1 2 3 4 5 6 7 8 10 cdlemkvcl K HL W H F T G T X T P A V B
37 11 33 25 34 26 35 36 syl231anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V B
38 1 3 latjcl K Lat S X P B V B S X P ˙ V B
39 12 32 37 38 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P ˙ V B
40 5 6 ltrncnv K HL W H G T G -1 T
41 24 34 40 syl2anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F G -1 T
42 5 6 ltrnco K HL W H X T G -1 T X G -1 T
43 24 26 41 42 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F X G -1 T
44 1 5 6 7 trlcl K HL W H X G -1 T R X G -1 B
45 24 43 44 syl2anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F R X G -1 B
46 1 3 latjcl K Lat S X P B R X G -1 B S X P ˙ R X G -1 B
47 12 32 45 46 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P ˙ R X G -1 B
48 1 2 3 4 5 6 7 8 9 10 cdlemk7 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P ˙ S X P ˙ V
49 1 2 3 4 5 6 7 8 10 cdlemk10 K HL W H F T G T X T P A ¬ P ˙ W V ˙ R X G -1
50 11 33 25 34 26 15 49 syl231anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V ˙ R X G -1
51 1 2 3 latjlej2 K Lat V B R X G -1 B S X P B V ˙ R X G -1 S X P ˙ V ˙ S X P ˙ R X G -1
52 12 37 45 32 51 syl13anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F V ˙ R X G -1 S X P ˙ V ˙ S X P ˙ R X G -1
53 50 52 mpd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S X P ˙ V ˙ S X P ˙ R X G -1
54 1 2 12 23 39 47 48 53 lattrd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B X I B R G R F R X R F S G P ˙ S X P ˙ R X G -1