Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
|
cdlemk.v1 |
|
10 |
|
simp1 |
|
11 |
|
simp22 |
|
12 |
|
simp21 |
|
13 |
5 6
|
ltrncnv |
|
14 |
10 12 13
|
syl2anc |
|
15 |
5 6
|
ltrnco |
|
16 |
10 11 14 15
|
syl3anc |
|
17 |
2 5 6 7
|
trlle |
|
18 |
10 16 17
|
syl2anc |
|
19 |
|
simp23 |
|
20 |
5 6
|
ltrnco |
|
21 |
10 19 14 20
|
syl3anc |
|
22 |
2 5 6 7
|
trlle |
|
23 |
10 21 22
|
syl2anc |
|
24 |
|
simp1l |
|
25 |
24
|
hllatd |
|
26 |
1 5 6 7
|
trlcl |
|
27 |
10 16 26
|
syl2anc |
|
28 |
1 5 6 7
|
trlcl |
|
29 |
10 21 28
|
syl2anc |
|
30 |
|
simp1r |
|
31 |
1 5
|
lhpbase |
|
32 |
30 31
|
syl |
|
33 |
1 2 3
|
latjle12 |
|
34 |
25 27 29 32 33
|
syl13anc |
|
35 |
18 23 34
|
mpbi2and |
|
36 |
1 3
|
latjcl |
|
37 |
25 27 29 36
|
syl3anc |
|
38 |
|
simp3l |
|
39 |
2 4 5 6
|
ltrnat |
|
40 |
10 11 38 39
|
syl3anc |
|
41 |
2 4 5 6
|
ltrnat |
|
42 |
10 19 38 41
|
syl3anc |
|
43 |
1 3 4
|
hlatjcl |
|
44 |
24 40 42 43
|
syl3anc |
|
45 |
1 2 8
|
latmlem2 |
|
46 |
25 37 32 44 45
|
syl13anc |
|
47 |
35 46
|
mpd |
|
48 |
|
simp3 |
|
49 |
1 2 3 4 5 6 7 8
|
cdlemk9 |
|
50 |
24 30 11 19 48 49
|
syl221anc |
|
51 |
47 50
|
breqtrd |
|
52 |
9 51
|
eqbrtrid |
|