Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
|
cdlemk.v1 |
⊢ 𝑉 = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
12 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
13 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
14 |
10 12 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
15 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
16 |
10 11 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
17 |
2 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
18 |
10 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
19 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 ∈ 𝑇 ) |
20 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
21 |
10 19 14 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
22 |
2 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
23 |
10 21 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
24 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
25 |
24
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
26 |
1 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
27 |
10 16 26
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
28 |
1 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
29 |
10 21 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
30 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
31 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
33 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ∧ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) ) |
34 |
25 27 29 32 33
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ∧ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) ) |
35 |
18 23 34
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) |
36 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) → ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
37 |
25 27 29 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
38 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
39 |
2 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
40 |
10 11 38 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
41 |
2 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
42 |
10 19 38 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
43 |
1 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
44 |
24 40 42 43
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
45 |
1 2 8
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) ) → ( ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ≤ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
46 |
25 37 32 44 45
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ≤ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
47 |
35 46
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ≤ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
48 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
49 |
1 2 3 4 5 6 7 8
|
cdlemk9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) |
50 |
24 30 11 19 48 49
|
syl221anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) |
51 |
47 50
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ≤ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) |
52 |
9 51
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑉 ≤ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) |