Metamath Proof Explorer


Theorem cdlemksv2

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function S at the fixed P parameter. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
Assertion cdlemksv2 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGP=P˙RG˙NP˙RGF-1

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 simp13 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFGT
11 1 2 3 4 5 6 7 8 9 cdlemksv GTSG=ιiT|iP=P˙RG˙NP˙RGF-1
12 10 11 syl KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSG=ιiT|iP=P˙RG˙NP˙RGF-1
13 12 eqcomd KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFιiT|iP=P˙RG˙NP˙RGF-1=SG
14 1 2 3 4 5 6 7 8 9 cdlemksel KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGT
15 simp11 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFKHLWH
16 simp22 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFPA¬P˙W
17 simp1 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFKHLWHFTGT
18 simp21 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFNT
19 2 4 5 6 ltrnel KHLWHNTPA¬P˙WNPA¬NP˙W
20 15 18 16 19 syl3anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFNPA¬NP˙W
21 simp11l KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFKHL
22 simp22l KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFPA
23 20 simpld KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFNPA
24 2 3 4 hlatlej2 KHLPANPANP˙P˙NP
25 21 22 23 24 syl3anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFNP˙P˙NP
26 simp23 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFRF=RN
27 26 oveq2d KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFP˙RF=P˙RN
28 2 3 4 5 6 7 trljat1 KHLWHNTPA¬P˙WP˙RN=P˙NP
29 15 18 16 28 syl3anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFP˙RN=P˙NP
30 27 29 eqtr2d KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFP˙NP=P˙RF
31 25 30 breqtrd KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFNP˙P˙RF
32 simp31 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFFIB
33 simp32 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFGIB
34 simp33 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFRGRF
35 34 necomd KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFRFRG
36 eqid P˙RG˙NP˙RGF-1=P˙RG˙NP˙RGF-1
37 1 2 3 8 4 5 6 7 36 cdlemh KHLWHFTGTPA¬P˙WNPA¬NP˙WNP˙P˙RFFIBGIBRFRGP˙RG˙NP˙RGF-1A¬P˙RG˙NP˙RGF-1˙W
38 17 16 20 31 32 33 35 37 syl133anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFP˙RG˙NP˙RGF-1A¬P˙RG˙NP˙RGF-1˙W
39 2 4 5 6 cdleme KHLWHPA¬P˙WP˙RG˙NP˙RGF-1A¬P˙RG˙NP˙RGF-1˙W∃!iTiP=P˙RG˙NP˙RGF-1
40 15 16 38 39 syl3anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRF∃!iTiP=P˙RG˙NP˙RGF-1
41 nfcv _iT
42 nfriota1 _iιiT|iP=P˙Rf˙NP˙RfF-1
43 41 42 nfmpt _ifTιiT|iP=P˙Rf˙NP˙RfF-1
44 9 43 nfcxfr _iS
45 nfcv _iG
46 44 45 nffv _iSG
47 nfcv _iP
48 46 47 nffv _iSGP
49 48 nfeq1 iSGP=P˙RG˙NP˙RGF-1
50 fveq1 i=SGiP=SGP
51 50 eqeq1d i=SGiP=P˙RG˙NP˙RGF-1SGP=P˙RG˙NP˙RGF-1
52 46 49 51 riota2f SGT∃!iTiP=P˙RG˙NP˙RGF-1SGP=P˙RG˙NP˙RGF-1ιiT|iP=P˙RG˙NP˙RGF-1=SG
53 14 40 52 syl2anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGP=P˙RG˙NP˙RGF-1ιiT|iP=P˙RG˙NP˙RGF-1=SG
54 13 53 mpbird KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGP=P˙RG˙NP˙RGF-1