Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|
2 |
|
cdlemk1.l |
|
3 |
|
cdlemk1.j |
|
4 |
|
cdlemk1.m |
|
5 |
|
cdlemk1.a |
|
6 |
|
cdlemk1.h |
|
7 |
|
cdlemk1.t |
|
8 |
|
cdlemk1.r |
|
9 |
|
cdlemk1.s |
|
10 |
|
cdlemk1.o |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk13 |
|
12 |
|
simp11l |
|
13 |
12
|
hllatd |
|
14 |
|
simp22l |
|
15 |
|
simp11 |
|
16 |
|
simp13 |
|
17 |
|
simp32 |
|
18 |
1 5 6 7 8
|
trlnidat |
|
19 |
15 16 17 18
|
syl3anc |
|
20 |
1 3 5
|
hlatjcl |
|
21 |
12 14 19 20
|
syl3anc |
|
22 |
|
simp21 |
|
23 |
2 5 6 7
|
ltrnat |
|
24 |
15 22 14 23
|
syl3anc |
|
25 |
|
simp12 |
|
26 |
|
simp33 |
|
27 |
5 6 7 8
|
trlcocnvat |
|
28 |
15 16 25 26 27
|
syl121anc |
|
29 |
1 3 5
|
hlatjcl |
|
30 |
12 24 28 29
|
syl3anc |
|
31 |
1 2 4
|
latmle1 |
|
32 |
13 21 30 31
|
syl3anc |
|
33 |
11 32
|
eqbrtrd |
|