Metamath Proof Explorer


Theorem cdlemkoatnle

Description: Utility lemma. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk1.l = ( le ‘ 𝐾 )
cdlemk1.j = ( join ‘ 𝐾 )
cdlemk1.m = ( meet ‘ 𝐾 )
cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk1.o 𝑂 = ( 𝑆𝐷 )
Assertion cdlemkoatnle ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑂𝑃 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk1.l = ( le ‘ 𝐾 )
3 cdlemk1.j = ( join ‘ 𝐾 )
4 cdlemk1.m = ( meet ‘ 𝐾 )
5 cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk1.o 𝑂 = ( 𝑆𝐷 )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 1 2 3 5 6 7 8 4 9 cdlemksel ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑆𝐷 ) ∈ 𝑇 )
13 10 12 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑂𝑇 )
14 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 2 5 6 7 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑂𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑂𝑃 ) 𝑊 ) )
16 11 13 14 15 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑂𝑃 ) 𝑊 ) )