Metamath Proof Explorer


Theorem cdlemkuv2-3N

Description: Part of proof of Lemma K of Crawley p. 118. Line 16 on p. 119 for i = 1, where sigma_2 (p) is Y , f_1 is D , and k_1 is O . (Contributed by NM, 6-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk3.b
|- B = ( Base ` K )
cdlemk3.l
|- .<_ = ( le ` K )
cdlemk3.j
|- .\/ = ( join ` K )
cdlemk3.m
|- ./\ = ( meet ` K )
cdlemk3.a
|- A = ( Atoms ` K )
cdlemk3.h
|- H = ( LHyp ` K )
cdlemk3.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk3.r
|- R = ( ( trL ` K ) ` W )
cdlemk3.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk3.u1
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
Assertion cdlemkuv2-3N
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( D Y G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk3.b
 |-  B = ( Base ` K )
2 cdlemk3.l
 |-  .<_ = ( le ` K )
3 cdlemk3.j
 |-  .\/ = ( join ` K )
4 cdlemk3.m
 |-  ./\ = ( meet ` K )
5 cdlemk3.a
 |-  A = ( Atoms ` K )
6 cdlemk3.h
 |-  H = ( LHyp ` K )
7 cdlemk3.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk3.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk3.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk3.u1
 |-  Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
11 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> D e. T )
12 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G e. T )
13 eqid
 |-  ( S ` D ) = ( S ` D )
14 eqid
 |-  ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
15 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu
 |-  ( ( D e. T /\ G e. T ) -> ( D Y G ) = ( ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) ` G ) )
16 11 12 15 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( D Y G ) = ( ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) ` G ) )
17 16 fveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( D Y G ) ` P ) = ( ( ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) ` G ) ` P ) )
18 1 2 3 4 5 6 7 8 9 13 14 cdlemkuv2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) )
19 17 18 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( D Y G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( S ` D ) ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) )