| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ceqsalg.1 |  |-  F/ x ps | 
						
							| 2 |  | ceqsalg.2 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 3 |  | elisset |  |-  ( A e. V -> E. x x = A ) | 
						
							| 4 |  | nfa1 |  |-  F/ x A. x ( x = A -> ph ) | 
						
							| 5 | 2 | biimpd |  |-  ( x = A -> ( ph -> ps ) ) | 
						
							| 6 | 5 | a2i |  |-  ( ( x = A -> ph ) -> ( x = A -> ps ) ) | 
						
							| 7 | 6 | sps |  |-  ( A. x ( x = A -> ph ) -> ( x = A -> ps ) ) | 
						
							| 8 | 4 1 7 | exlimd |  |-  ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) | 
						
							| 9 | 3 8 | syl5com |  |-  ( A e. V -> ( A. x ( x = A -> ph ) -> ps ) ) | 
						
							| 10 | 2 | biimprcd |  |-  ( ps -> ( x = A -> ph ) ) | 
						
							| 11 | 1 10 | alrimi |  |-  ( ps -> A. x ( x = A -> ph ) ) | 
						
							| 12 | 9 11 | impbid1 |  |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |