Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 3-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgcgrxfr.p | |- P = ( Base ` G ) |
|
tgcgrxfr.m | |- .- = ( dist ` G ) |
||
tgcgrxfr.i | |- I = ( Itv ` G ) |
||
tgcgrxfr.r | |- .~ = ( cgrG ` G ) |
||
tgcgrxfr.g | |- ( ph -> G e. TarskiG ) |
||
tgbtwnxfr.a | |- ( ph -> A e. P ) |
||
tgbtwnxfr.b | |- ( ph -> B e. P ) |
||
tgbtwnxfr.c | |- ( ph -> C e. P ) |
||
tgbtwnxfr.d | |- ( ph -> D e. P ) |
||
tgbtwnxfr.e | |- ( ph -> E e. P ) |
||
tgbtwnxfr.f | |- ( ph -> F e. P ) |
||
tgbtwnxfr.2 | |- ( ph -> <" A B C "> .~ <" D E F "> ) |
||
Assertion | cgr3swap13 | |- ( ph -> <" C B A "> .~ <" F E D "> ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | |- P = ( Base ` G ) |
|
2 | tgcgrxfr.m | |- .- = ( dist ` G ) |
|
3 | tgcgrxfr.i | |- I = ( Itv ` G ) |
|
4 | tgcgrxfr.r | |- .~ = ( cgrG ` G ) |
|
5 | tgcgrxfr.g | |- ( ph -> G e. TarskiG ) |
|
6 | tgbtwnxfr.a | |- ( ph -> A e. P ) |
|
7 | tgbtwnxfr.b | |- ( ph -> B e. P ) |
|
8 | tgbtwnxfr.c | |- ( ph -> C e. P ) |
|
9 | tgbtwnxfr.d | |- ( ph -> D e. P ) |
|
10 | tgbtwnxfr.e | |- ( ph -> E e. P ) |
|
11 | tgbtwnxfr.f | |- ( ph -> F e. P ) |
|
12 | tgbtwnxfr.2 | |- ( ph -> <" A B C "> .~ <" D E F "> ) |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3swap12 | |- ( ph -> <" B A C "> .~ <" E D F "> ) |
14 | 1 2 3 4 5 7 6 8 10 9 11 13 | cgr3swap23 | |- ( ph -> <" B C A "> .~ <" E F D "> ) |
15 | 1 2 3 4 5 7 8 6 10 11 9 14 | cgr3swap12 | |- ( ph -> <" C B A "> .~ <" F E D "> ) |