| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscgra.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | iscgra.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | iscgra.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | iscgra.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | iscgra.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | iscgra.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | iscgra.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | iscgra.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | iscgra.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | iscgra.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | cgrahl1.2 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 12 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 13 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG ) | 
						
							| 14 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P ) | 
						
							| 16 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B e. P ) | 
						
							| 17 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> C e. P ) | 
						
							| 18 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 19 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> A e. P ) | 
						
							| 20 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P ) | 
						
							| 21 |  | simpr1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) | 
						
							| 22 | 1 12 2 18 13 19 16 17 20 14 15 21 | cgr3simp2 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) y ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( E ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) | 
						
							| 24 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P ) | 
						
							| 25 |  | simpr3 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F ) | 
						
							| 26 | 1 2 3 15 24 14 13 25 | hlne1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y =/= E ) | 
						
							| 27 | 26 | necomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E =/= y ) | 
						
							| 28 | 1 12 2 13 14 15 16 17 23 27 | tgcgrneq |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B =/= C ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 | iscgra |  |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) | 
						
							| 30 | 11 29 | mpbid |  |-  ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) | 
						
							| 31 | 28 30 | r19.29vva |  |-  ( ph -> B =/= C ) |