| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscgra.p |
|- P = ( Base ` G ) |
| 2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
| 3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
| 4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
| 6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
| 7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
| 8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
| 9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
| 10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgrahl1.2 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 13 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG ) |
| 14 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P ) |
| 15 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P ) |
| 16 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B e. P ) |
| 17 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> C e. P ) |
| 18 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 19 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> A e. P ) |
| 20 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P ) |
| 21 |
|
simpr1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) |
| 22 |
1 12 2 18 13 19 16 17 20 14 15 21
|
cgr3simp2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) y ) ) |
| 23 |
22
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( E ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) |
| 24 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P ) |
| 25 |
|
simpr3 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F ) |
| 26 |
1 2 3 15 24 14 13 25
|
hlne1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y =/= E ) |
| 27 |
26
|
necomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E =/= y ) |
| 28 |
1 12 2 13 14 15 16 17 23 27
|
tgcgrneq |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B =/= C ) |
| 29 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
| 30 |
11 29
|
mpbid |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) |
| 31 |
28 30
|
r19.29vva |
|- ( ph -> B =/= C ) |