| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscgra.p |
|- P = ( Base ` G ) |
| 2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
| 3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
| 4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
| 6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
| 7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
| 8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
| 9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
| 10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
| 11 |
|
simpl |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> a = <" A B C "> ) |
| 12 |
|
eqidd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> x = x ) |
| 13 |
|
simpr |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> b = <" D E F "> ) |
| 14 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 1 ) = ( <" D E F "> ` 1 ) ) |
| 15 |
|
eqidd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> y = y ) |
| 16 |
12 14 15
|
s3eqd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" x ( b ` 1 ) y "> = <" x ( <" D E F "> ` 1 ) y "> ) |
| 17 |
11 16
|
breq12d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> ) ) |
| 18 |
14
|
fveq2d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( K ` ( b ` 1 ) ) = ( K ` ( <" D E F "> ` 1 ) ) ) |
| 19 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 0 ) = ( <" D E F "> ` 0 ) ) |
| 20 |
12 18 19
|
breq123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( x ( K ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) ) ) |
| 21 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 2 ) = ( <" D E F "> ` 2 ) ) |
| 22 |
15 18 21
|
breq123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( y ( K ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) |
| 23 |
17 20 22
|
3anbi123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
| 24 |
23
|
2rexbidv |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
| 25 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } |
| 26 |
24 25
|
brab2a |
|- ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
| 27 |
|
eqidd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> x = x ) |
| 28 |
|
s3fv1 |
|- ( E e. P -> ( <" D E F "> ` 1 ) = E ) |
| 29 |
9 28
|
syl |
|- ( ph -> ( <" D E F "> ` 1 ) = E ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 1 ) = E ) |
| 31 |
|
eqidd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> y = y ) |
| 32 |
27 30 31
|
s3eqd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> <" x ( <" D E F "> ` 1 ) y "> = <" x E y "> ) |
| 33 |
32
|
breq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x E y "> ) ) |
| 34 |
30
|
fveq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( K ` ( <" D E F "> ` 1 ) ) = ( K ` E ) ) |
| 35 |
|
s3fv0 |
|- ( D e. P -> ( <" D E F "> ` 0 ) = D ) |
| 36 |
8 35
|
syl |
|- ( ph -> ( <" D E F "> ` 0 ) = D ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 0 ) = D ) |
| 38 |
27 34 37
|
breq123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) <-> x ( K ` E ) D ) ) |
| 39 |
|
s3fv2 |
|- ( F e. P -> ( <" D E F "> ` 2 ) = F ) |
| 40 |
10 39
|
syl |
|- ( ph -> ( <" D E F "> ` 2 ) = F ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 2 ) = F ) |
| 42 |
31 34 41
|
breq123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) <-> y ( K ` E ) F ) ) |
| 43 |
33 38 42
|
3anbi123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
| 44 |
43
|
2rexbidva |
|- ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
| 45 |
44
|
anbi2d |
|- ( ph -> ( ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
| 46 |
26 45
|
bitrid |
|- ( ph -> ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
| 47 |
|
elex |
|- ( G e. TarskiG -> G e. _V ) |
| 48 |
|
simpl |
|- ( ( p = P /\ k = K ) -> p = P ) |
| 49 |
48
|
oveq1d |
|- ( ( p = P /\ k = K ) -> ( p ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) |
| 50 |
49
|
eleq2d |
|- ( ( p = P /\ k = K ) -> ( a e. ( p ^m ( 0 ..^ 3 ) ) <-> a e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 51 |
49
|
eleq2d |
|- ( ( p = P /\ k = K ) -> ( b e. ( p ^m ( 0 ..^ 3 ) ) <-> b e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 52 |
50 51
|
anbi12d |
|- ( ( p = P /\ k = K ) -> ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) <-> ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) ) ) |
| 53 |
|
simpr |
|- ( ( p = P /\ k = K ) -> k = K ) |
| 54 |
53
|
fveq1d |
|- ( ( p = P /\ k = K ) -> ( k ` ( b ` 1 ) ) = ( K ` ( b ` 1 ) ) ) |
| 55 |
54
|
breqd |
|- ( ( p = P /\ k = K ) -> ( x ( k ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( b ` 1 ) ) ( b ` 0 ) ) ) |
| 56 |
54
|
breqd |
|- ( ( p = P /\ k = K ) -> ( y ( k ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
| 57 |
55 56
|
3anbi23d |
|- ( ( p = P /\ k = K ) -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
| 58 |
48 57
|
rexeqbidv |
|- ( ( p = P /\ k = K ) -> ( E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
| 59 |
48 58
|
rexeqbidv |
|- ( ( p = P /\ k = K ) -> ( E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
| 60 |
52 59
|
anbi12d |
|- ( ( p = P /\ k = K ) -> ( ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
| 61 |
1 3 60
|
sbcie2s |
|- ( g = G -> ( [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
| 62 |
61
|
opabbidv |
|- ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 63 |
|
fveq2 |
|- ( g = G -> ( cgrG ` g ) = ( cgrG ` G ) ) |
| 64 |
63
|
breqd |
|- ( g = G -> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> <-> a ( cgrG ` G ) <" x ( b ` 1 ) y "> ) ) |
| 65 |
64
|
3anbi1d |
|- ( g = G -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
| 66 |
65
|
2rexbidv |
|- ( g = G -> ( E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
| 67 |
66
|
anbi2d |
|- ( g = G -> ( ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
| 68 |
67
|
opabbidv |
|- ( g = G -> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 69 |
62 68
|
eqtrd |
|- ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 70 |
|
df-cgra |
|- cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 71 |
|
ovex |
|- ( P ^m ( 0 ..^ 3 ) ) e. _V |
| 72 |
71 71
|
xpex |
|- ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V |
| 73 |
|
opabssxp |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } C_ ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) |
| 74 |
72 73
|
ssexi |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } e. _V |
| 75 |
69 70 74
|
fvmpt |
|- ( G e. _V -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 76 |
4 47 75
|
3syl |
|- ( ph -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 77 |
76
|
breqd |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> ) ) |
| 78 |
5 6 7
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
| 79 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
| 80 |
1
|
fvexi |
|- P e. _V |
| 81 |
|
3nn0 |
|- 3 e. NN0 |
| 82 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 83 |
80 81 82
|
mp2an |
|- ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 84 |
78 79 83
|
sylanblc |
|- ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 85 |
8 9 10
|
s3cld |
|- ( ph -> <" D E F "> e. Word P ) |
| 86 |
|
s3len |
|- ( # ` <" D E F "> ) = 3 |
| 87 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 88 |
80 81 87
|
mp2an |
|- ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 89 |
85 86 88
|
sylanblc |
|- ( ph -> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 90 |
84 89
|
jca |
|- ( ph -> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 91 |
90
|
biantrurd |
|- ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
| 92 |
46 77 91
|
3bitr4d |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |