Step |
Hyp |
Ref |
Expression |
1 |
|
iscgra.p |
|- P = ( Base ` G ) |
2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
11 |
|
simpl |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> a = <" A B C "> ) |
12 |
|
eqidd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> x = x ) |
13 |
|
simpr |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> b = <" D E F "> ) |
14 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 1 ) = ( <" D E F "> ` 1 ) ) |
15 |
|
eqidd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> y = y ) |
16 |
12 14 15
|
s3eqd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" x ( b ` 1 ) y "> = <" x ( <" D E F "> ` 1 ) y "> ) |
17 |
11 16
|
breq12d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> ) ) |
18 |
14
|
fveq2d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( K ` ( b ` 1 ) ) = ( K ` ( <" D E F "> ` 1 ) ) ) |
19 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 0 ) = ( <" D E F "> ` 0 ) ) |
20 |
12 18 19
|
breq123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( x ( K ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) ) ) |
21 |
13
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 2 ) = ( <" D E F "> ` 2 ) ) |
22 |
15 18 21
|
breq123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( y ( K ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) |
23 |
17 20 22
|
3anbi123d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
24 |
23
|
2rexbidv |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
25 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } |
26 |
24 25
|
brab2a |
|- ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) |
27 |
|
eqidd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> x = x ) |
28 |
|
s3fv1 |
|- ( E e. P -> ( <" D E F "> ` 1 ) = E ) |
29 |
9 28
|
syl |
|- ( ph -> ( <" D E F "> ` 1 ) = E ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 1 ) = E ) |
31 |
|
eqidd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> y = y ) |
32 |
27 30 31
|
s3eqd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> <" x ( <" D E F "> ` 1 ) y "> = <" x E y "> ) |
33 |
32
|
breq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x E y "> ) ) |
34 |
30
|
fveq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( K ` ( <" D E F "> ` 1 ) ) = ( K ` E ) ) |
35 |
|
s3fv0 |
|- ( D e. P -> ( <" D E F "> ` 0 ) = D ) |
36 |
8 35
|
syl |
|- ( ph -> ( <" D E F "> ` 0 ) = D ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 0 ) = D ) |
38 |
27 34 37
|
breq123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) <-> x ( K ` E ) D ) ) |
39 |
|
s3fv2 |
|- ( F e. P -> ( <" D E F "> ` 2 ) = F ) |
40 |
10 39
|
syl |
|- ( ph -> ( <" D E F "> ` 2 ) = F ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 2 ) = F ) |
42 |
31 34 41
|
breq123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) <-> y ( K ` E ) F ) ) |
43 |
33 38 42
|
3anbi123d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
44 |
43
|
2rexbidva |
|- ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
45 |
44
|
anbi2d |
|- ( ph -> ( ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
46 |
26 45
|
syl5bb |
|- ( ph -> ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
47 |
|
elex |
|- ( G e. TarskiG -> G e. _V ) |
48 |
|
simpl |
|- ( ( p = P /\ k = K ) -> p = P ) |
49 |
48
|
eqcomd |
|- ( ( p = P /\ k = K ) -> P = p ) |
50 |
49
|
oveq1d |
|- ( ( p = P /\ k = K ) -> ( P ^m ( 0 ..^ 3 ) ) = ( p ^m ( 0 ..^ 3 ) ) ) |
51 |
50
|
eleq2d |
|- ( ( p = P /\ k = K ) -> ( a e. ( P ^m ( 0 ..^ 3 ) ) <-> a e. ( p ^m ( 0 ..^ 3 ) ) ) ) |
52 |
50
|
eleq2d |
|- ( ( p = P /\ k = K ) -> ( b e. ( P ^m ( 0 ..^ 3 ) ) <-> b e. ( p ^m ( 0 ..^ 3 ) ) ) ) |
53 |
51 52
|
anbi12d |
|- ( ( p = P /\ k = K ) -> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) <-> ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) ) ) |
54 |
|
simpr |
|- ( ( p = P /\ k = K ) -> k = K ) |
55 |
54
|
fveq1d |
|- ( ( p = P /\ k = K ) -> ( k ` ( b ` 1 ) ) = ( K ` ( b ` 1 ) ) ) |
56 |
55
|
breqd |
|- ( ( p = P /\ k = K ) -> ( x ( k ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( b ` 1 ) ) ( b ` 0 ) ) ) |
57 |
55
|
breqd |
|- ( ( p = P /\ k = K ) -> ( y ( k ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
58 |
56 57
|
3anbi23d |
|- ( ( p = P /\ k = K ) -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
59 |
58
|
bicomd |
|- ( ( p = P /\ k = K ) -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
60 |
49 59
|
rexeqbidv |
|- ( ( p = P /\ k = K ) -> ( E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
61 |
49 60
|
rexeqbidv |
|- ( ( p = P /\ k = K ) -> ( E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
62 |
53 61
|
anbi12d |
|- ( ( p = P /\ k = K ) -> ( ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
63 |
1 3 62
|
sbcie2s |
|- ( g = G -> ( [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
64 |
63
|
opabbidv |
|- ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
65 |
|
fveq2 |
|- ( g = G -> ( cgrG ` g ) = ( cgrG ` G ) ) |
66 |
65
|
breqd |
|- ( g = G -> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> <-> a ( cgrG ` G ) <" x ( b ` 1 ) y "> ) ) |
67 |
66
|
3anbi1d |
|- ( g = G -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
68 |
67
|
2rexbidv |
|- ( g = G -> ( E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) |
69 |
68
|
anbi2d |
|- ( g = G -> ( ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) ) |
70 |
69
|
opabbidv |
|- ( g = G -> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
71 |
64 70
|
eqtrd |
|- ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
72 |
|
df-cgra |
|- cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
73 |
|
ovex |
|- ( P ^m ( 0 ..^ 3 ) ) e. _V |
74 |
73 73
|
xpex |
|- ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V |
75 |
|
opabssxp |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } C_ ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) |
76 |
74 75
|
ssexi |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } e. _V |
77 |
71 72 76
|
fvmpt |
|- ( G e. _V -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
78 |
4 47 77
|
3syl |
|- ( ph -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
79 |
78
|
breqd |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> ) ) |
80 |
5 6 7
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
81 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
82 |
1
|
fvexi |
|- P e. _V |
83 |
|
3nn0 |
|- 3 e. NN0 |
84 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
85 |
82 83 84
|
mp2an |
|- ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
86 |
80 81 85
|
sylanblc |
|- ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
87 |
8 9 10
|
s3cld |
|- ( ph -> <" D E F "> e. Word P ) |
88 |
|
s3len |
|- ( # ` <" D E F "> ) = 3 |
89 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
90 |
82 83 89
|
mp2an |
|- ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
91 |
87 88 90
|
sylanblc |
|- ( ph -> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
92 |
86 91
|
jca |
|- ( ph -> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
93 |
92
|
biantrurd |
|- ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) |
94 |
46 79 93
|
3bitr4d |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |