Step |
Hyp |
Ref |
Expression |
1 |
|
iscgra.p |
|- P = ( Base ` G ) |
2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
11 |
|
iscgra1.m |
|- .- = ( dist ` G ) |
12 |
|
iscgra1.1 |
|- ( ph -> A =/= B ) |
13 |
|
iscgra1.2 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. y e. P E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) ) |
15 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> E e. P ) |
16 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> B e. P ) |
17 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> A e. P ) |
18 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> G e. TarskiG ) |
19 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> D e. P ) |
20 |
|
simpllr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> y e. P ) |
21 |
|
simpr2 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> y ( K ` E ) D ) |
22 |
1 2 3 20 19 15 18 21
|
hlne2 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> D =/= E ) |
23 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> A =/= B ) |
24 |
23
|
necomd |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> B =/= A ) |
25 |
1 2 3 19 15 15 18 22
|
hlid |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> D ( K ` E ) D ) |
26 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
27 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> C e. P ) |
28 |
|
simplr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> x e. P ) |
29 |
|
simpr1 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" y E x "> ) |
30 |
1 11 2 26 18 17 16 27 20 15 28 29
|
cgr3simp1 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( A .- B ) = ( y .- E ) ) |
31 |
30
|
eqcomd |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( y .- E ) = ( A .- B ) ) |
32 |
1 11 2 18 20 15 17 16 31
|
tgcgrcomlr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( E .- y ) = ( B .- A ) ) |
33 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( A .- B ) = ( D .- E ) ) |
34 |
33
|
eqcomd |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( D .- E ) = ( A .- B ) ) |
35 |
1 11 2 18 19 15 17 16 34
|
tgcgrcomlr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( E .- D ) = ( B .- A ) ) |
36 |
1 2 3 15 16 17 18 19 11 22 24 20 19 21 25 32 35
|
hlcgreulem |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> y = D ) |
37 |
|
simpr3 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> x ( K ` E ) F ) |
38 |
36 29 37
|
jca32 |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) -> ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) |
39 |
|
simprrl |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> <" A B C "> ( cgrG ` G ) <" y E x "> ) |
40 |
|
simprl |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> y = D ) |
41 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> D e. P ) |
42 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> E e. P ) |
43 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> G e. TarskiG ) |
44 |
1 11 2 4 5 6 8 9 13 12
|
tgcgrneq |
|- ( ph -> D =/= E ) |
45 |
44
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> D =/= E ) |
46 |
1 2 3 41 41 42 43 45
|
hlid |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> D ( K ` E ) D ) |
47 |
40 46
|
eqbrtrd |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> y ( K ` E ) D ) |
48 |
|
simprrr |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> x ( K ` E ) F ) |
49 |
39 47 48
|
3jca |
|- ( ( ( ( ph /\ y e. P ) /\ x e. P ) /\ ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) -> ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) ) |
50 |
38 49
|
impbida |
|- ( ( ( ph /\ y e. P ) /\ x e. P ) -> ( ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) <-> ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) ) |
51 |
50
|
rexbidva |
|- ( ( ph /\ y e. P ) -> ( E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) <-> E. x e. P ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) ) |
52 |
|
r19.42v |
|- ( E. x e. P ( y = D /\ ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) <-> ( y = D /\ E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) |
53 |
51 52
|
bitrdi |
|- ( ( ph /\ y e. P ) -> ( E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) <-> ( y = D /\ E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) ) |
54 |
53
|
rexbidva |
|- ( ph -> ( E. y e. P E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ y ( K ` E ) D /\ x ( K ` E ) F ) <-> E. y e. P ( y = D /\ E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) ) ) |
55 |
|
id |
|- ( y = D -> y = D ) |
56 |
|
eqidd |
|- ( y = D -> E = E ) |
57 |
|
eqidd |
|- ( y = D -> x = x ) |
58 |
55 56 57
|
s3eqd |
|- ( y = D -> <" y E x "> = <" D E x "> ) |
59 |
58
|
breq2d |
|- ( y = D -> ( <" A B C "> ( cgrG ` G ) <" y E x "> <-> <" A B C "> ( cgrG ` G ) <" D E x "> ) ) |
60 |
59
|
anbi1d |
|- ( y = D -> ( ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) <-> ( <" A B C "> ( cgrG ` G ) <" D E x "> /\ x ( K ` E ) F ) ) ) |
61 |
60
|
rexbidv |
|- ( y = D -> ( E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" D E x "> /\ x ( K ` E ) F ) ) ) |
62 |
61
|
ceqsrexv |
|- ( D e. P -> ( E. y e. P ( y = D /\ E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" D E x "> /\ x ( K ` E ) F ) ) ) |
63 |
8 62
|
syl |
|- ( ph -> ( E. y e. P ( y = D /\ E. x e. P ( <" A B C "> ( cgrG ` G ) <" y E x "> /\ x ( K ` E ) F ) ) <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" D E x "> /\ x ( K ` E ) F ) ) ) |
64 |
14 54 63
|
3bitrd |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" D E x "> /\ x ( K ` E ) F ) ) ) |