| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscgra.p |
|- P = ( Base ` G ) |
| 2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
| 3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
| 4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
| 6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
| 7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
| 8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
| 9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
| 10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
| 11 |
|
iscgrad.x |
|- ( ph -> X e. P ) |
| 12 |
|
iscgrad.y |
|- ( ph -> Y e. P ) |
| 13 |
|
iscgrad.1 |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" X E Y "> ) |
| 14 |
|
iscgrad.2 |
|- ( ph -> X ( K ` E ) D ) |
| 15 |
|
iscgrad.3 |
|- ( ph -> Y ( K ` E ) F ) |
| 16 |
|
id |
|- ( x = X -> x = X ) |
| 17 |
|
eqidd |
|- ( x = X -> E = E ) |
| 18 |
|
eqidd |
|- ( x = X -> y = y ) |
| 19 |
16 17 18
|
s3eqd |
|- ( x = X -> <" x E y "> = <" X E y "> ) |
| 20 |
19
|
breq2d |
|- ( x = X -> ( <" A B C "> ( cgrG ` G ) <" x E y "> <-> <" A B C "> ( cgrG ` G ) <" X E y "> ) ) |
| 21 |
|
breq1 |
|- ( x = X -> ( x ( K ` E ) D <-> X ( K ` E ) D ) ) |
| 22 |
20 21
|
3anbi12d |
|- ( x = X -> ( ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) <-> ( <" A B C "> ( cgrG ` G ) <" X E y "> /\ X ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
| 23 |
|
eqidd |
|- ( y = Y -> X = X ) |
| 24 |
|
eqidd |
|- ( y = Y -> E = E ) |
| 25 |
|
id |
|- ( y = Y -> y = Y ) |
| 26 |
23 24 25
|
s3eqd |
|- ( y = Y -> <" X E y "> = <" X E Y "> ) |
| 27 |
26
|
breq2d |
|- ( y = Y -> ( <" A B C "> ( cgrG ` G ) <" X E y "> <-> <" A B C "> ( cgrG ` G ) <" X E Y "> ) ) |
| 28 |
|
breq1 |
|- ( y = Y -> ( y ( K ` E ) F <-> Y ( K ` E ) F ) ) |
| 29 |
27 28
|
3anbi13d |
|- ( y = Y -> ( ( <" A B C "> ( cgrG ` G ) <" X E y "> /\ X ( K ` E ) D /\ y ( K ` E ) F ) <-> ( <" A B C "> ( cgrG ` G ) <" X E Y "> /\ X ( K ` E ) D /\ Y ( K ` E ) F ) ) ) |
| 30 |
22 29
|
rspc2ev |
|- ( ( X e. P /\ Y e. P /\ ( <" A B C "> ( cgrG ` G ) <" X E Y "> /\ X ( K ` E ) D /\ Y ( K ` E ) F ) ) -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) |
| 31 |
11 12 13 14 15 30
|
syl113anc |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) |
| 32 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
| 33 |
31 32
|
mpbird |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |