Metamath Proof Explorer


Theorem iscgra1

Description: A special version of iscgra where one distance is known to be equal. In this case, angle congruence can be written with only one quantifier. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses iscgra.p 𝑃 = ( Base ‘ 𝐺 )
iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
iscgra.g ( 𝜑𝐺 ∈ TarskiG )
iscgra.a ( 𝜑𝐴𝑃 )
iscgra.b ( 𝜑𝐵𝑃 )
iscgra.c ( 𝜑𝐶𝑃 )
iscgra.d ( 𝜑𝐷𝑃 )
iscgra.e ( 𝜑𝐸𝑃 )
iscgra.f ( 𝜑𝐹𝑃 )
iscgra1.m = ( dist ‘ 𝐺 )
iscgra1.1 ( 𝜑𝐴𝐵 )
iscgra1.2 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
Assertion iscgra1 ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 iscgra.p 𝑃 = ( Base ‘ 𝐺 )
2 iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
3 iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
4 iscgra.g ( 𝜑𝐺 ∈ TarskiG )
5 iscgra.a ( 𝜑𝐴𝑃 )
6 iscgra.b ( 𝜑𝐵𝑃 )
7 iscgra.c ( 𝜑𝐶𝑃 )
8 iscgra.d ( 𝜑𝐷𝑃 )
9 iscgra.e ( 𝜑𝐸𝑃 )
10 iscgra.f ( 𝜑𝐹𝑃 )
11 iscgra1.m = ( dist ‘ 𝐺 )
12 iscgra1.1 ( 𝜑𝐴𝐵 )
13 iscgra1.2 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
14 1 2 3 4 5 6 7 8 9 10 iscgra ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑦𝑃𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
15 9 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐸𝑃 )
16 6 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐵𝑃 )
17 5 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐴𝑃 )
18 4 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐺 ∈ TarskiG )
19 8 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷𝑃 )
20 simpllr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦𝑃 )
21 simpr2 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦 ( 𝐾𝐸 ) 𝐷 )
22 1 2 3 20 19 15 18 21 hlne2 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷𝐸 )
23 12 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐴𝐵 )
24 23 necomd ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐵𝐴 )
25 1 2 3 19 15 15 18 22 hlid ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷 ( 𝐾𝐸 ) 𝐷 )
26 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
27 7 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐶𝑃 )
28 simplr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥𝑃 )
29 simpr1 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ )
30 1 11 2 26 18 17 16 27 20 15 28 29 cgr3simp1 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐴 𝐵 ) = ( 𝑦 𝐸 ) )
31 30 eqcomd ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝑦 𝐸 ) = ( 𝐴 𝐵 ) )
32 1 11 2 18 20 15 17 16 31 tgcgrcomlr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐸 𝑦 ) = ( 𝐵 𝐴 ) )
33 13 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
34 33 eqcomd ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐷 𝐸 ) = ( 𝐴 𝐵 ) )
35 1 11 2 18 19 15 17 16 34 tgcgrcomlr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐸 𝐷 ) = ( 𝐵 𝐴 ) )
36 1 2 3 15 16 17 18 19 11 22 24 20 19 21 25 32 35 hlcgreulem ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦 = 𝐷 )
37 simpr3 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥 ( 𝐾𝐸 ) 𝐹 )
38 36 29 37 jca32 ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
39 simprrl ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ )
40 simprl ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝑦 = 𝐷 )
41 8 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝐷𝑃 )
42 9 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝐸𝑃 )
43 4 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝐺 ∈ TarskiG )
44 1 11 2 4 5 6 8 9 13 12 tgcgrneq ( 𝜑𝐷𝐸 )
45 44 ad3antrrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝐷𝐸 )
46 1 2 3 41 41 42 43 45 hlid ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝐷 ( 𝐾𝐸 ) 𝐷 )
47 40 46 eqbrtrd ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝑦 ( 𝐾𝐸 ) 𝐷 )
48 simprrr ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → 𝑥 ( 𝐾𝐸 ) 𝐹 )
49 39 47 48 3jca ( ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) ∧ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) )
50 38 49 impbida ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑥𝑃 ) → ( ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) )
51 50 rexbidva ( ( 𝜑𝑦𝑃 ) → ( ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ∃ 𝑥𝑃 ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) )
52 r19.42v ( ∃ 𝑥𝑃 ( 𝑦 = 𝐷 ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ↔ ( 𝑦 = 𝐷 ∧ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
53 51 52 bitrdi ( ( 𝜑𝑦𝑃 ) → ( ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ( 𝑦 = 𝐷 ∧ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) )
54 53 rexbidva ( 𝜑 → ( ∃ 𝑦𝑃𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑦 ( 𝐾𝐸 ) 𝐷𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ∃ 𝑦𝑃 ( 𝑦 = 𝐷 ∧ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ) )
55 id ( 𝑦 = 𝐷𝑦 = 𝐷 )
56 eqidd ( 𝑦 = 𝐷𝐸 = 𝐸 )
57 eqidd ( 𝑦 = 𝐷𝑥 = 𝑥 )
58 55 56 57 s3eqd ( 𝑦 = 𝐷 → ⟨“ 𝑦 𝐸 𝑥 ”⟩ = ⟨“ 𝐷 𝐸 𝑥 ”⟩ )
59 58 breq2d ( 𝑦 = 𝐷 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ↔ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ) )
60 59 anbi1d ( 𝑦 = 𝐷 → ( ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
61 60 rexbidv ( 𝑦 = 𝐷 → ( ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ↔ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
62 61 ceqsrexv ( 𝐷𝑃 → ( ∃ 𝑦𝑃 ( 𝑦 = 𝐷 ∧ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ↔ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
63 8 62 syl ( 𝜑 → ( ∃ 𝑦𝑃 ( 𝑦 = 𝐷 ∧ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑦 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) ↔ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )
64 14 54 63 3bitrd ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑥𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐹 ) ) )