Metamath Proof Explorer
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tgcgrcomlr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
tgcgrcomlr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
tgcgrcomlr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
tgcgrcomlr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
|
|
tgcgrcomlr.6 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
|
|
tgcgrneq.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
Assertion |
tgcgrneq |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgcgrcomlr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgcgrcomlr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgcgrcomlr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgcgrcomlr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgcgrcomlr.6 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
| 10 |
|
tgcgrneq.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
tgcgreqb |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
| 12 |
11
|
necon3bid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
| 13 |
10 12
|
mpbid |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |