| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | hlcgrex.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 10 |  | hlcgrex.1 | ⊢ ( 𝜑  →  𝐷  ≠  𝐴 ) | 
						
							| 11 |  | hlcgrex.2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 12 |  | hlcgreulem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 13 |  | hlcgreulem.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 14 |  | hlcgreulem.1 | ⊢ ( 𝜑  →  𝑋 ( 𝐾 ‘ 𝐴 ) 𝐷 ) | 
						
							| 15 |  | hlcgreulem.2 | ⊢ ( 𝜑  →  𝑌 ( 𝐾 ‘ 𝐴 ) 𝐷 ) | 
						
							| 16 |  | hlcgreulem.3 | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 17 |  | hlcgreulem.4 | ⊢ ( 𝜑  →  ( 𝐴  −  𝑌 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 18 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 19 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 20 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 21 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑦  ∈  𝑃 ) | 
						
							| 23 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 24 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑌  ∈  𝑃 ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ≠  𝑦 ) | 
						
							| 26 | 25 | necomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑦  ≠  𝐴 ) | 
						
							| 27 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 28 | 1 2 3 12 8 4 7 14 | hlcomd | ⊢ ( 𝜑  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑋 ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑋 ) | 
						
							| 30 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝑦 ) ) | 
						
							| 31 | 1 2 3 27 23 22 18 19 29 30 | btwnhl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑋 𝐼 𝑦 ) ) | 
						
							| 32 | 1 9 2 18 23 19 22 31 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑦 𝐼 𝑋 ) ) | 
						
							| 33 | 1 2 3 13 8 4 7 15 | hlcomd | ⊢ ( 𝜑  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑌 ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑌 ) | 
						
							| 35 | 1 2 3 27 24 22 18 19 34 30 | btwnhl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑌 𝐼 𝑦 ) ) | 
						
							| 36 | 1 9 2 18 24 19 22 35 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑦 𝐼 𝑌 ) ) | 
						
							| 37 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  ( 𝐴  −  𝑋 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 38 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  ( 𝐴  −  𝑌 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 39 | 1 9 2 18 19 20 21 22 23 24 26 32 36 37 38 | tgsegconeq | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑋  =  𝑌 ) | 
						
							| 40 | 1 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  𝑃  ∈  V ) | 
						
							| 42 | 41 5 6 11 | nehash2 | ⊢ ( 𝜑  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 43 | 1 9 2 7 8 4 42 | tgbtwndiff | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) ) | 
						
							| 44 | 39 43 | r19.29a | ⊢ ( 𝜑  →  𝑋  =  𝑌 ) |