Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | s2eqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝑁 ) | |
s2eqd.2 | ⊢ ( 𝜑 → 𝐵 = 𝑂 ) | ||
s3eqd.3 | ⊢ ( 𝜑 → 𝐶 = 𝑃 ) | ||
Assertion | s3eqd | ⊢ ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 ”⟩ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝑁 ) | |
2 | s2eqd.2 | ⊢ ( 𝜑 → 𝐵 = 𝑂 ) | |
3 | s3eqd.3 | ⊢ ( 𝜑 → 𝐶 = 𝑃 ) | |
4 | 1 2 | s2eqd | ⊢ ( 𝜑 → ⟨“ 𝐴 𝐵 ”⟩ = ⟨“ 𝑁 𝑂 ”⟩ ) |
5 | 3 | s1eqd | ⊢ ( 𝜑 → ⟨“ 𝐶 ”⟩ = ⟨“ 𝑃 ”⟩ ) |
6 | 4 5 | oveq12d | ⊢ ( 𝜑 → ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ ) = ( ⟨“ 𝑁 𝑂 ”⟩ ++ ⟨“ 𝑃 ”⟩ ) ) |
7 | df-s3 | ⊢ ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ ) | |
8 | df-s3 | ⊢ ⟨“ 𝑁 𝑂 𝑃 ”⟩ = ( ⟨“ 𝑁 𝑂 ”⟩ ++ ⟨“ 𝑃 ”⟩ ) | |
9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝑁 𝑂 𝑃 ”⟩ ) |