| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
hlid.1 |
|- ( ph -> A =/= C ) |
| 9 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 10 |
1 9 2 7 6 4
|
tgbtwntriv2 |
|- ( ph -> A e. ( C I A ) ) |
| 11 |
10
|
olcd |
|- ( ph -> ( A e. ( C I A ) \/ A e. ( C I A ) ) ) |
| 12 |
1 2 3 4 4 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) A <-> ( A =/= C /\ A =/= C /\ ( A e. ( C I A ) \/ A e. ( C I A ) ) ) ) ) |
| 13 |
8 8 11 12
|
mpbir3and |
|- ( ph -> A ( K ` C ) A ) |