| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishlg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishlg.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | ishlg.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | ishlg.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | ishlg.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | hlln.1 |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | hltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | hltr.1 |  |-  ( ph -> A ( K ` D ) B ) | 
						
							| 10 |  | hltr.2 |  |-  ( ph -> B ( K ` D ) C ) | 
						
							| 11 | 1 2 3 4 5 8 7 9 | hlne1 |  |-  ( ph -> A =/= D ) | 
						
							| 12 | 1 2 3 5 6 8 7 10 | hlne2 |  |-  ( ph -> C =/= D ) | 
						
							| 13 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 14 | 7 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> G e. TarskiG ) | 
						
							| 15 | 8 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> D e. P ) | 
						
							| 16 | 4 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. P ) | 
						
							| 17 | 5 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> B e. P ) | 
						
							| 18 | 6 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> C e. P ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. ( D I B ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> B e. ( D I C ) ) | 
						
							| 21 | 1 13 2 14 15 16 17 18 19 20 | tgbtwnexch |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> A e. ( D I C ) ) | 
						
							| 22 | 21 | orcd |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ B e. ( D I C ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 23 | 7 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> G e. TarskiG ) | 
						
							| 24 | 8 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> D e. P ) | 
						
							| 25 | 4 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> A e. P ) | 
						
							| 26 | 6 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> C e. P ) | 
						
							| 27 | 5 | ad2antrr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> B e. P ) | 
						
							| 28 |  | simplr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> A e. ( D I B ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> C e. ( D I B ) ) | 
						
							| 30 | 1 2 23 24 25 26 27 28 29 | tgbtwnconn3 |  |-  ( ( ( ph /\ A e. ( D I B ) ) /\ C e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 31 | 1 2 3 5 6 8 7 | ishlg |  |-  ( ph -> ( B ( K ` D ) C <-> ( B =/= D /\ C =/= D /\ ( B e. ( D I C ) \/ C e. ( D I B ) ) ) ) ) | 
						
							| 32 | 10 31 | mpbid |  |-  ( ph -> ( B =/= D /\ C =/= D /\ ( B e. ( D I C ) \/ C e. ( D I B ) ) ) ) | 
						
							| 33 | 32 | simp3d |  |-  ( ph -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) | 
						
							| 35 | 22 30 34 | mpjaodan |  |-  ( ( ph /\ A e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 36 | 7 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> G e. TarskiG ) | 
						
							| 37 | 8 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> D e. P ) | 
						
							| 38 | 5 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. P ) | 
						
							| 39 | 4 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> A e. P ) | 
						
							| 40 | 6 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> C e. P ) | 
						
							| 41 | 32 | simp1d |  |-  ( ph -> B =/= D ) | 
						
							| 42 | 41 | necomd |  |-  ( ph -> D =/= B ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> D =/= B ) | 
						
							| 44 |  | simplr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. ( D I A ) ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> B e. ( D I C ) ) | 
						
							| 46 | 1 2 36 37 38 39 40 43 44 45 | tgbtwnconn1 |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ B e. ( D I C ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 47 | 7 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> G e. TarskiG ) | 
						
							| 48 | 8 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> D e. P ) | 
						
							| 49 | 6 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. P ) | 
						
							| 50 | 5 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> B e. P ) | 
						
							| 51 | 4 | ad2antrr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> A e. P ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. ( D I B ) ) | 
						
							| 53 |  | simplr |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> B e. ( D I A ) ) | 
						
							| 54 | 1 13 2 47 48 49 50 51 52 53 | tgbtwnexch |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> C e. ( D I A ) ) | 
						
							| 55 | 54 | olcd |  |-  ( ( ( ph /\ B e. ( D I A ) ) /\ C e. ( D I B ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 56 | 33 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> ( B e. ( D I C ) \/ C e. ( D I B ) ) ) | 
						
							| 57 | 46 55 56 | mpjaodan |  |-  ( ( ph /\ B e. ( D I A ) ) -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 58 | 1 2 3 4 5 8 7 | ishlg |  |-  ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) ) | 
						
							| 59 | 9 58 | mpbid |  |-  ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) | 
						
							| 60 | 59 | simp3d |  |-  ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) ) | 
						
							| 61 | 35 57 60 | mpjaodan |  |-  ( ph -> ( A e. ( D I C ) \/ C e. ( D I A ) ) ) | 
						
							| 62 | 1 2 3 4 6 8 7 | ishlg |  |-  ( ph -> ( A ( K ` D ) C <-> ( A =/= D /\ C =/= D /\ ( A e. ( D I C ) \/ C e. ( D I A ) ) ) ) ) | 
						
							| 63 | 11 12 61 62 | mpbir3and |  |-  ( ph -> A ( K ` D ) C ) |