Metamath Proof Explorer


Theorem hltr

Description: The half-line relation is transitive. Theorem 6.7 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hltr.d φ D P
hltr.1 φ A K D B
hltr.2 φ B K D C
Assertion hltr φ A K D C

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hltr.d φ D P
9 hltr.1 φ A K D B
10 hltr.2 φ B K D C
11 1 2 3 4 5 8 7 9 hlne1 φ A D
12 1 2 3 5 6 8 7 10 hlne2 φ C D
13 eqid dist G = dist G
14 7 ad2antrr φ A D I B B D I C G 𝒢 Tarski
15 8 ad2antrr φ A D I B B D I C D P
16 4 ad2antrr φ A D I B B D I C A P
17 5 ad2antrr φ A D I B B D I C B P
18 6 ad2antrr φ A D I B B D I C C P
19 simplr φ A D I B B D I C A D I B
20 simpr φ A D I B B D I C B D I C
21 1 13 2 14 15 16 17 18 19 20 tgbtwnexch φ A D I B B D I C A D I C
22 21 orcd φ A D I B B D I C A D I C C D I A
23 7 ad2antrr φ A D I B C D I B G 𝒢 Tarski
24 8 ad2antrr φ A D I B C D I B D P
25 4 ad2antrr φ A D I B C D I B A P
26 6 ad2antrr φ A D I B C D I B C P
27 5 ad2antrr φ A D I B C D I B B P
28 simplr φ A D I B C D I B A D I B
29 simpr φ A D I B C D I B C D I B
30 1 2 23 24 25 26 27 28 29 tgbtwnconn3 φ A D I B C D I B A D I C C D I A
31 1 2 3 5 6 8 7 ishlg φ B K D C B D C D B D I C C D I B
32 10 31 mpbid φ B D C D B D I C C D I B
33 32 simp3d φ B D I C C D I B
34 33 adantr φ A D I B B D I C C D I B
35 22 30 34 mpjaodan φ A D I B A D I C C D I A
36 7 ad2antrr φ B D I A B D I C G 𝒢 Tarski
37 8 ad2antrr φ B D I A B D I C D P
38 5 ad2antrr φ B D I A B D I C B P
39 4 ad2antrr φ B D I A B D I C A P
40 6 ad2antrr φ B D I A B D I C C P
41 32 simp1d φ B D
42 41 necomd φ D B
43 42 ad2antrr φ B D I A B D I C D B
44 simplr φ B D I A B D I C B D I A
45 simpr φ B D I A B D I C B D I C
46 1 2 36 37 38 39 40 43 44 45 tgbtwnconn1 φ B D I A B D I C A D I C C D I A
47 7 ad2antrr φ B D I A C D I B G 𝒢 Tarski
48 8 ad2antrr φ B D I A C D I B D P
49 6 ad2antrr φ B D I A C D I B C P
50 5 ad2antrr φ B D I A C D I B B P
51 4 ad2antrr φ B D I A C D I B A P
52 simpr φ B D I A C D I B C D I B
53 simplr φ B D I A C D I B B D I A
54 1 13 2 47 48 49 50 51 52 53 tgbtwnexch φ B D I A C D I B C D I A
55 54 olcd φ B D I A C D I B A D I C C D I A
56 33 adantr φ B D I A B D I C C D I B
57 46 55 56 mpjaodan φ B D I A A D I C C D I A
58 1 2 3 4 5 8 7 ishlg φ A K D B A D B D A D I B B D I A
59 9 58 mpbid φ A D B D A D I B B D I A
60 59 simp3d φ A D I B B D I A
61 35 57 60 mpjaodan φ A D I C C D I A
62 1 2 3 4 6 8 7 ishlg φ A K D C A D C D A D I C C D I A
63 11 12 61 62 mpbir3and φ A K D C