| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
hltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
hltr.1 |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ) |
| 10 |
|
hltr.2 |
⊢ ( 𝜑 → 𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶 ) |
| 11 |
1 2 3 4 5 8 7 9
|
hlne1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
| 12 |
1 2 3 5 6 8 7 10
|
hlne2 |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
| 13 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 14 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
| 16 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 18 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) |
| 21 |
1 13 2 14 15 16 17 18 19 20
|
tgbtwnexch |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ) |
| 22 |
21
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 23 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 24 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
| 25 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 26 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 27 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) |
| 30 |
1 2 23 24 25 26 27 28 29
|
tgbtwnconn3 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 31 |
1 2 3 5 6 8 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶 ↔ ( 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ∧ ( 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) ) ) ) |
| 32 |
10 31
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ∧ ( 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) ) ) |
| 33 |
32
|
simp3d |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → ( 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) ) |
| 35 |
22 30 34
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 36 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 37 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
| 38 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 39 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 40 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 41 |
32
|
simp1d |
⊢ ( 𝜑 → 𝐵 ≠ 𝐷 ) |
| 42 |
41
|
necomd |
⊢ ( 𝜑 → 𝐷 ≠ 𝐵 ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐷 ≠ 𝐵 ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) |
| 46 |
1 2 36 37 38 39 40 43 44 45
|
tgbtwnconn1 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 47 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 48 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
| 49 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 50 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 51 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) |
| 54 |
1 13 2 47 48 49 50 51 52 53
|
tgbtwnexch |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) |
| 55 |
54
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 56 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → ( 𝐵 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) ) |
| 57 |
46 55 56
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 58 |
1 2 3 4 5 8 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ↔ ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) ) |
| 59 |
9 58
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) |
| 60 |
59
|
simp3d |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 61 |
35 57 60
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
| 62 |
1 2 3 4 6 8 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶 ↔ ( 𝐴 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) ) |
| 63 |
11 12 61 62
|
mpbir3and |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶 ) |