| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | hltr.1 | ⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ) | 
						
							| 10 |  | hltr.2 | ⊢ ( 𝜑  →  𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶 ) | 
						
							| 11 | 1 2 3 4 5 8 7 9 | hlne1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐷 ) | 
						
							| 12 | 1 2 3 5 6 8 7 10 | hlne2 | ⊢ ( 𝜑  →  𝐶  ≠  𝐷 ) | 
						
							| 13 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 14 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 16 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 17 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 18 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) ) | 
						
							| 21 | 1 13 2 14 15 16 17 18 19 20 | tgbtwnexch | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐶 ) ) | 
						
							| 22 | 21 | orcd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 23 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 24 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 25 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 26 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 27 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 30 | 1 2 23 24 25 26 27 28 29 | tgbtwnconn3 | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 31 | 1 2 3 5 6 8 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶  ↔  ( 𝐵  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) ) ) | 
						
							| 32 | 10 31 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) ) | 
						
							| 33 | 32 | simp3d | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) | 
						
							| 35 | 22 30 34 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 36 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 37 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 38 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 39 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 40 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 41 | 32 | simp1d | ⊢ ( 𝜑  →  𝐵  ≠  𝐷 ) | 
						
							| 42 | 41 | necomd | ⊢ ( 𝜑  →  𝐷  ≠  𝐵 ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ≠  𝐵 ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) ) | 
						
							| 46 | 1 2 36 37 38 39 40 43 44 45 | tgbtwnconn1 | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 47 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 48 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 49 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 50 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 51 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 52 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 54 | 1 13 2 47 48 49 50 51 52 53 | tgbtwnexch | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 55 | 54 | olcd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 56 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) | 
						
							| 57 | 46 55 56 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 58 | 1 2 3 4 5 8 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵  ↔  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) ) | 
						
							| 59 | 9 58 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) | 
						
							| 60 | 59 | simp3d | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 61 | 35 57 60 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 62 | 1 2 3 4 6 8 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶  ↔  ( 𝐴  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) ) | 
						
							| 63 | 11 12 61 62 | mpbir3and | ⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶 ) |