| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | hlbtwn.1 | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 10 |  | hlbtwn.2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 11 |  | hlbtwn.3 | ⊢ ( 𝜑  →  𝐷  ≠  𝐶 ) | 
						
							| 12 | 10 11 | 2thd | ⊢ ( 𝜑  →  ( 𝐵  ≠  𝐶  ↔  𝐷  ≠  𝐶 ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 17 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 19 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 20 | 1 2 13 14 15 16 17 18 19 | tgbtwnconn3 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 22 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 23 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 27 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 29 | 1 21 2 22 23 24 25 26 27 28 | tgbtwnexch | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 30 | 29 | olcd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 31 | 20 30 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 32 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 33 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 34 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 35 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 36 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) ) | 
						
							| 38 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 39 | 1 21 2 32 33 34 35 36 37 38 | tgbtwnexch | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 40 | 39 | orcd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐷 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 41 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 42 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 43 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 44 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 45 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 46 | 11 | necomd | ⊢ ( 𝜑  →  𝐶  ≠  𝐷 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐶  ≠  𝐷 ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 49 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 50 | 1 2 41 42 43 44 45 47 48 49 | tgbtwnconn1 | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 51 | 40 50 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) )  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 52 | 31 51 | impbida | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  ↔  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) | 
						
							| 53 | 12 52 | 3anbi23d | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐴  ≠  𝐶  ∧  𝐷  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) | 
						
							| 55 | 1 2 3 4 8 6 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐷  ↔  ( 𝐴  ≠  𝐶  ∧  𝐷  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) | 
						
							| 56 | 53 54 55 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐷 ) ) |