Metamath Proof Explorer
		
		
		
		Description:  Deduce half-line from betweenness.  (Contributed by Thierry Arnoux, 4-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
					
						|  |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
					
						|  |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
					
						|  |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
					
						|  |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
					
						|  |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
					
						|  |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
					
						|  |  | btwnhl1.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
					
						|  |  | btwnhl1.2 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
					
						|  |  | btwnhl1.3 | ⊢ ( 𝜑  →  𝐶  ≠  𝐴 ) | 
				
					|  | Assertion | btwnhl1 | ⊢  ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐴 ) 𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | btwnhl1.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 10 |  | btwnhl1.2 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 11 |  | btwnhl1.3 | ⊢ ( 𝜑  →  𝐶  ≠  𝐴 ) | 
						
							| 12 | 10 | necomd | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
						
							| 13 | 9 | orcd | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 14 | 1 2 3 6 5 4 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐴 ) 𝐵  ↔  ( 𝐶  ≠  𝐴  ∧  𝐵  ≠  𝐴  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) ) ) | 
						
							| 15 | 11 12 13 14 | mpbir3and | ⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐴 ) 𝐵 ) |