| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | btwnhl1.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 10 |  | btwnhl1.2 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 11 |  | btwnhl2.3 | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 12 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 13 | 1 12 2 7 4 6 5 9 | tgbtwncom | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 14 | 13 | orcd | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) | 
						
							| 15 | 1 2 3 6 4 5 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 16 | 11 10 14 15 | mpbir3and | ⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |