| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishlg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishlg.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | ishlg.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | ishlg.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | ishlg.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | hlln.1 |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | hltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | btwnhl1.1 |  |-  ( ph -> C e. ( A I B ) ) | 
						
							| 10 |  | btwnhl1.2 |  |-  ( ph -> A =/= B ) | 
						
							| 11 |  | btwnhl2.3 |  |-  ( ph -> C =/= B ) | 
						
							| 12 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 13 | 1 12 2 7 4 6 5 9 | tgbtwncom |  |-  ( ph -> C e. ( B I A ) ) | 
						
							| 14 | 13 | orcd |  |-  ( ph -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) | 
						
							| 15 | 1 2 3 6 4 5 7 | ishlg |  |-  ( ph -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 16 | 11 10 14 15 | mpbir3and |  |-  ( ph -> C ( K ` B ) A ) |