| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
hltr.d |
|- ( ph -> D e. P ) |
| 9 |
|
btwnhl1.1 |
|- ( ph -> C e. ( A I B ) ) |
| 10 |
|
btwnhl1.2 |
|- ( ph -> A =/= B ) |
| 11 |
|
btwnhl2.3 |
|- ( ph -> C =/= B ) |
| 12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 13 |
1 12 2 7 4 6 5 9
|
tgbtwncom |
|- ( ph -> C e. ( B I A ) ) |
| 14 |
13
|
orcd |
|- ( ph -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) |
| 15 |
1 2 3 6 4 5 7
|
ishlg |
|- ( ph -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
| 16 |
11 10 14 15
|
mpbir3and |
|- ( ph -> C ( K ` B ) A ) |