| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishlg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishlg.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | ishlg.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | ishlg.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | ishlg.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | hlln.1 |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | hltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | btwnhl.1 |  |-  ( ph -> A ( K ` D ) B ) | 
						
							| 10 |  | btwnhl.3 |  |-  ( ph -> D e. ( A I C ) ) | 
						
							| 11 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> G e. TarskiG ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> C e. P ) | 
						
							| 14 | 8 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> D e. P ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> B e. P ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> A e. P ) | 
						
							| 17 | 1 2 3 4 5 8 7 | ishlg |  |-  ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) ) | 
						
							| 18 | 9 17 | mpbid |  |-  ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) | 
						
							| 19 | 18 | simp1d |  |-  ( ph -> A =/= D ) | 
						
							| 20 | 19 | necomd |  |-  ( ph -> D =/= A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> D =/= A ) | 
						
							| 22 | 10 | adantr |  |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( A I C ) ) | 
						
							| 23 | 1 11 2 12 16 14 13 22 | tgbtwncom |  |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I A ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ph /\ A e. ( D I B ) ) -> A e. ( D I B ) ) | 
						
							| 25 | 1 11 2 12 13 14 16 15 21 23 24 | tgbtwnouttr |  |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I B ) ) | 
						
							| 26 | 1 11 2 12 13 14 15 25 | tgbtwncom |  |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( B I C ) ) | 
						
							| 27 | 7 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> G e. TarskiG ) | 
						
							| 28 | 4 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> A e. P ) | 
						
							| 29 | 5 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> B e. P ) | 
						
							| 30 | 8 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> D e. P ) | 
						
							| 31 | 6 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> C e. P ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ B e. ( D I A ) ) -> B e. ( D I A ) ) | 
						
							| 33 | 1 11 2 27 30 29 28 32 | tgbtwncom |  |-  ( ( ph /\ B e. ( D I A ) ) -> B e. ( A I D ) ) | 
						
							| 34 | 10 | adantr |  |-  ( ( ph /\ B e. ( D I A ) ) -> D e. ( A I C ) ) | 
						
							| 35 | 1 11 2 27 28 29 30 31 33 34 | tgbtwnexch3 |  |-  ( ( ph /\ B e. ( D I A ) ) -> D e. ( B I C ) ) | 
						
							| 36 | 18 | simp3d |  |-  ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) ) | 
						
							| 37 | 26 35 36 | mpjaodan |  |-  ( ph -> D e. ( B I C ) ) |