| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|
| 2 |
|
ishlg.i |
|
| 3 |
|
ishlg.k |
|
| 4 |
|
ishlg.a |
|
| 5 |
|
ishlg.b |
|
| 6 |
|
ishlg.c |
|
| 7 |
|
hlln.1 |
|
| 8 |
|
hltr.d |
|
| 9 |
|
btwnhl.1 |
|
| 10 |
|
btwnhl.3 |
|
| 11 |
|
eqid |
|
| 12 |
7
|
adantr |
|
| 13 |
6
|
adantr |
|
| 14 |
8
|
adantr |
|
| 15 |
5
|
adantr |
|
| 16 |
4
|
adantr |
|
| 17 |
1 2 3 4 5 8 7
|
ishlg |
|
| 18 |
9 17
|
mpbid |
|
| 19 |
18
|
simp1d |
|
| 20 |
19
|
necomd |
|
| 21 |
20
|
adantr |
|
| 22 |
10
|
adantr |
|
| 23 |
1 11 2 12 16 14 13 22
|
tgbtwncom |
|
| 24 |
|
simpr |
|
| 25 |
1 11 2 12 13 14 16 15 21 23 24
|
tgbtwnouttr |
|
| 26 |
1 11 2 12 13 14 15 25
|
tgbtwncom |
|
| 27 |
7
|
adantr |
|
| 28 |
4
|
adantr |
|
| 29 |
5
|
adantr |
|
| 30 |
8
|
adantr |
|
| 31 |
6
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
1 11 2 27 30 29 28 32
|
tgbtwncom |
|
| 34 |
10
|
adantr |
|
| 35 |
1 11 2 27 28 29 30 31 33 34
|
tgbtwnexch3 |
|
| 36 |
18
|
simp3d |
|
| 37 |
26 35 36
|
mpjaodan |
|