Metamath Proof Explorer


Theorem ishlg

Description: Rays : Definition 6.1 of Schwabhauser p. 43. With this definition, A ( KC ) B means that A and B are on the same ray with initial point C . This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ( ( KC ) " { A } ) . (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
ishlg.g φ G V
Assertion ishlg φ A K C B A C B C A C I B B C I A

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 ishlg.g φ G V
8 simpl a = A b = B a = A
9 8 neeq1d a = A b = B a C A C
10 simpr a = A b = B b = B
11 10 neeq1d a = A b = B b C B C
12 10 oveq2d a = A b = B C I b = C I B
13 8 12 eleq12d a = A b = B a C I b A C I B
14 8 oveq2d a = A b = B C I a = C I A
15 10 14 eleq12d a = A b = B b C I a B C I A
16 13 15 orbi12d a = A b = B a C I b b C I a A C I B B C I A
17 9 11 16 3anbi123d a = A b = B a C b C a C I b b C I a A C B C A C I B B C I A
18 eqid a b | a P b P a C b C a C I b b C I a = a b | a P b P a C b C a C I b b C I a
19 17 18 brab2a A a b | a P b P a C b C a C I b b C I a B A P B P A C B C A C I B B C I A
20 19 a1i φ A a b | a P b P a C b C a C I b b C I a B A P B P A C B C A C I B B C I A
21 elex G V G V
22 fveq2 g = G Base g = Base G
23 22 1 eqtr4di g = G Base g = P
24 23 eleq2d g = G a Base g a P
25 23 eleq2d g = G b Base g b P
26 24 25 anbi12d g = G a Base g b Base g a P b P
27 fveq2 g = G Itv g = Itv G
28 27 2 eqtr4di g = G Itv g = I
29 28 oveqd g = G c Itv g b = c I b
30 29 eleq2d g = G a c Itv g b a c I b
31 28 oveqd g = G c Itv g a = c I a
32 31 eleq2d g = G b c Itv g a b c I a
33 30 32 orbi12d g = G a c Itv g b b c Itv g a a c I b b c I a
34 33 3anbi3d g = G a c b c a c Itv g b b c Itv g a a c b c a c I b b c I a
35 26 34 anbi12d g = G a Base g b Base g a c b c a c Itv g b b c Itv g a a P b P a c b c a c I b b c I a
36 35 opabbidv g = G a b | a Base g b Base g a c b c a c Itv g b b c Itv g a = a b | a P b P a c b c a c I b b c I a
37 23 36 mpteq12dv g = G c Base g a b | a Base g b Base g a c b c a c Itv g b b c Itv g a = c P a b | a P b P a c b c a c I b b c I a
38 df-hlg hl 𝒢 = g V c Base g a b | a Base g b Base g a c b c a c Itv g b b c Itv g a
39 37 38 1 mptfvmpt G V hl 𝒢 G = c P a b | a P b P a c b c a c I b b c I a
40 7 21 39 3syl φ hl 𝒢 G = c P a b | a P b P a c b c a c I b b c I a
41 3 40 syl5eq φ K = c P a b | a P b P a c b c a c I b b c I a
42 neeq2 c = C a c a C
43 neeq2 c = C b c b C
44 oveq1 c = C c I b = C I b
45 44 eleq2d c = C a c I b a C I b
46 oveq1 c = C c I a = C I a
47 46 eleq2d c = C b c I a b C I a
48 45 47 orbi12d c = C a c I b b c I a a C I b b C I a
49 42 43 48 3anbi123d c = C a c b c a c I b b c I a a C b C a C I b b C I a
50 49 anbi2d c = C a P b P a c b c a c I b b c I a a P b P a C b C a C I b b C I a
51 50 opabbidv c = C a b | a P b P a c b c a c I b b c I a = a b | a P b P a C b C a C I b b C I a
52 51 adantl φ c = C a b | a P b P a c b c a c I b b c I a = a b | a P b P a C b C a C I b b C I a
53 1 fvexi P V
54 53 53 xpex P × P V
55 opabssxp a b | a P b P a C b C a C I b b C I a P × P
56 54 55 ssexi a b | a P b P a C b C a C I b b C I a V
57 56 a1i φ a b | a P b P a C b C a C I b b C I a V
58 41 52 6 57 fvmptd φ K C = a b | a P b P a C b C a C I b b C I a
59 58 breqd φ A K C B A a b | a P b P a C b C a C I b b C I a B
60 4 5 jca φ A P B P
61 60 biantrurd φ A C B C A C I B B C I A A P B P A C B C A C I B B C I A
62 20 59 61 3bitr4d φ A K C B A C B C A C I B B C I A