Metamath Proof Explorer


Theorem tgbtwnouttr

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnintr.1 φAP
tgbtwnintr.2 φBP
tgbtwnintr.3 φCP
tgbtwnintr.4 φDP
tgbtwnouttr.1 φBC
tgbtwnouttr.2 φBAIC
tgbtwnouttr.3 φCBID
Assertion tgbtwnouttr φBAID

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnintr.1 φAP
6 tgbtwnintr.2 φBP
7 tgbtwnintr.3 φCP
8 tgbtwnintr.4 φDP
9 tgbtwnouttr.1 φBC
10 tgbtwnouttr.2 φBAIC
11 tgbtwnouttr.3 φCBID
12 9 necomd φCB
13 1 2 3 4 6 7 8 11 tgbtwncom φCDIB
14 1 2 3 4 5 6 7 10 tgbtwncom φBCIA
15 1 2 3 4 8 7 6 5 12 13 14 tgbtwnouttr2 φBDIA
16 1 2 3 4 8 6 5 15 tgbtwncom φBAID