Metamath Proof Explorer


Theorem tgbtwnexch

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnintr.1 φAP
tgbtwnintr.2 φBP
tgbtwnintr.3 φCP
tgbtwnintr.4 φDP
tgbtwnexch.1 φBAIC
tgbtwnexch.2 φCAID
Assertion tgbtwnexch φBAID

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnintr.1 φAP
6 tgbtwnintr.2 φBP
7 tgbtwnintr.3 φCP
8 tgbtwnintr.4 φDP
9 tgbtwnexch.1 φBAIC
10 tgbtwnexch.2 φCAID
11 1 2 3 4 5 7 8 10 tgbtwncom φCDIA
12 1 2 3 4 5 6 7 9 tgbtwncom φBCIA
13 1 2 3 4 8 7 6 5 11 12 tgbtwnexch2 φBDIA
14 1 2 3 4 8 6 5 13 tgbtwncom φBAID