Metamath Proof Explorer


Theorem tgtrisegint

Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of Schwabhauser p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnintr.1 φAP
tgbtwnintr.2 φBP
tgbtwnintr.3 φCP
tgbtwnintr.4 φDP
tgtrisegint.e φEP
tgtrisegint.p φFP
tgtrisegint.1 φBAIC
tgtrisegint.2 φEDIC
tgtrisegint.3 φFAID
Assertion tgtrisegint φqPqFICqBIE

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnintr.1 φAP
6 tgbtwnintr.2 φBP
7 tgbtwnintr.3 φCP
8 tgbtwnintr.4 φDP
9 tgtrisegint.e φEP
10 tgtrisegint.p φFP
11 tgtrisegint.1 φBAIC
12 tgtrisegint.2 φEDIC
13 tgtrisegint.3 φFAID
14 4 ad2antrr φrPrEIArFICG𝒢Tarski
15 9 ad2antrr φrPrEIArFICEP
16 7 ad2antrr φrPrEIArFICCP
17 5 ad2antrr φrPrEIArFICAP
18 simplr φrPrEIArFICrP
19 6 ad2antrr φrPrEIArFICBP
20 simprl φrPrEIArFICrEIA
21 11 ad2antrr φrPrEIArFICBAIC
22 1 2 3 14 17 19 16 21 tgbtwncom φrPrEIArFICBCIA
23 1 2 3 14 15 16 17 18 19 20 22 axtgpasch φrPrEIArFICqPqrICqBIE
24 14 ad2antrr φrPrEIArFICqPqrICG𝒢Tarski
25 10 ad2antrr φrPrEIArFICFP
26 25 ad2antrr φrPrEIArFICqPqrICFP
27 18 ad2antrr φrPrEIArFICqPqrICrP
28 simplr φrPrEIArFICqPqrICqP
29 16 ad2antrr φrPrEIArFICqPqrICCP
30 simprr φrPrEIArFICrFIC
31 30 ad2antrr φrPrEIArFICqPqrICrFIC
32 simpr φrPrEIArFICqPqrICqrIC
33 1 2 3 24 26 27 28 29 31 32 tgbtwnexch2 φrPrEIArFICqPqrICqFIC
34 33 ex φrPrEIArFICqPqrICqFIC
35 34 anim1d φrPrEIArFICqPqrICqBIEqFICqBIE
36 35 reximdva φrPrEIArFICqPqrICqBIEqPqFICqBIE
37 23 36 mpd φrPrEIArFICqPqFICqBIE
38 1 2 3 4 8 9 7 12 tgbtwncom φECID
39 1 2 3 4 7 5 8 9 10 38 13 axtgpasch φrPrEIArFIC
40 37 39 r19.29a φqPqFICqBIE