| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgbtwnintr.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgbtwnintr.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgbtwnintr.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgbtwnintr.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgtrisegint.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
tgtrisegint.p |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
tgtrisegint.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 12 |
|
tgtrisegint.2 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐶 ) ) |
| 13 |
|
tgtrisegint.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐸 ∈ 𝑃 ) |
| 16 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝑟 ∈ 𝑃 ) |
| 19 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 20 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ) |
| 21 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 22 |
1 2 3 14 17 19 16 21
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 23 |
1 2 3 14 15 16 17 18 19 20 22
|
axtgpasch |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) ) |
| 24 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 25 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝐹 ∈ 𝑃 ) |
| 27 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝑟 ∈ 𝑃 ) |
| 28 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝑞 ∈ 𝑃 ) |
| 29 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 30 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) |
| 32 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) |
| 33 |
1 2 3 24 26 27 28 29 31 32
|
tgbtwnexch2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ) → 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ) |
| 34 |
33
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) → 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ) ) |
| 35 |
34
|
anim1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) → ( 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) ) ) |
| 36 |
35
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → ( ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( 𝑟 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) → ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) ) ) |
| 37 |
23 36
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) → ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) ) |
| 38 |
1 2 3 4 8 9 7 12
|
tgbtwncom |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐶 𝐼 𝐷 ) ) |
| 39 |
1 2 3 4 7 5 8 9 10 38 13
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ( 𝐸 𝐼 𝐴 ) ∧ 𝑟 ∈ ( 𝐹 𝐼 𝐶 ) ) ) |
| 40 |
37 39
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ( 𝐹 𝐼 𝐶 ) ∧ 𝑞 ∈ ( 𝐵 𝐼 𝐸 ) ) ) |