Metamath Proof Explorer


Theorem tgbtwnexch2

Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnintr.1 φAP
tgbtwnintr.2 φBP
tgbtwnintr.3 φCP
tgbtwnintr.4 φDP
tgbtwnexch2.1 φBAID
tgbtwnexch2.2 φCBID
Assertion tgbtwnexch2 φCAID

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnintr.1 φAP
6 tgbtwnintr.2 φBP
7 tgbtwnintr.3 φCP
8 tgbtwnintr.4 φDP
9 tgbtwnexch2.1 φBAID
10 tgbtwnexch2.2 φCBID
11 simpr φB=CB=C
12 9 adantr φB=CBAID
13 11 12 eqeltrrd φB=CCAID
14 4 adantr φBCG𝒢Tarski
15 5 adantr φBCAP
16 6 adantr φBCBP
17 7 adantr φBCCP
18 8 adantr φBCDP
19 simpr φBCBC
20 10 adantr φBCCBID
21 9 adantr φBCBAID
22 1 2 3 14 17 16 15 18 20 21 tgbtwnintr φBCBCIA
23 1 2 3 14 17 16 15 22 tgbtwncom φBCBAIC
24 1 2 3 14 15 16 17 18 19 23 20 tgbtwnouttr2 φBCCAID
25 13 24 pm2.61dane φCAID