| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwnintr.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwnintr.2 |
|- ( ph -> B e. P ) |
| 7 |
|
tgbtwnintr.3 |
|- ( ph -> C e. P ) |
| 8 |
|
tgbtwnintr.4 |
|- ( ph -> D e. P ) |
| 9 |
|
tgbtwnexch2.1 |
|- ( ph -> B e. ( A I D ) ) |
| 10 |
|
tgbtwnexch2.2 |
|- ( ph -> C e. ( B I D ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
| 12 |
9
|
adantr |
|- ( ( ph /\ B = C ) -> B e. ( A I D ) ) |
| 13 |
11 12
|
eqeltrrd |
|- ( ( ph /\ B = C ) -> C e. ( A I D ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ B =/= C ) -> G e. TarskiG ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ B =/= C ) -> A e. P ) |
| 16 |
6
|
adantr |
|- ( ( ph /\ B =/= C ) -> B e. P ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ B =/= C ) -> C e. P ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ B =/= C ) -> D e. P ) |
| 19 |
|
simpr |
|- ( ( ph /\ B =/= C ) -> B =/= C ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ B =/= C ) -> C e. ( B I D ) ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ B =/= C ) -> B e. ( A I D ) ) |
| 22 |
1 2 3 14 17 16 15 18 20 21
|
tgbtwnintr |
|- ( ( ph /\ B =/= C ) -> B e. ( C I A ) ) |
| 23 |
1 2 3 14 17 16 15 22
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> B e. ( A I C ) ) |
| 24 |
1 2 3 14 15 16 17 18 19 23 20
|
tgbtwnouttr2 |
|- ( ( ph /\ B =/= C ) -> C e. ( A I D ) ) |
| 25 |
13 24
|
pm2.61dane |
|- ( ph -> C e. ( A I D ) ) |