Database ELEMENTARY GEOMETRY Tarskian Geometry Congruence tgbtwnouttr  
				
		 
		
			
		 
		Description:   Outer transitivity law for betweenness.  Right-hand side of Theorem
         3.7 of Schwabhauser  p. 30.  (Contributed by Thierry Arnoux , 23-Mar-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						tkgeom.p ⊢  𝑃   =  ( Base ‘ 𝐺  )  
					
						tkgeom.d ⊢   −    =  ( dist ‘ 𝐺  )  
					
						tkgeom.i ⊢  𝐼   =  ( Itv ‘ 𝐺  )  
					
						tkgeom.g ⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
					
						tgbtwnintr.1 ⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
					
						tgbtwnintr.2 ⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
					
						tgbtwnintr.3 ⊢  ( 𝜑   →  𝐶   ∈  𝑃  )  
					
						tgbtwnintr.4 ⊢  ( 𝜑   →  𝐷   ∈  𝑃  )  
					
						tgbtwnouttr.1 ⊢  ( 𝜑   →  𝐵   ≠  𝐶  )  
					
						tgbtwnouttr.2 ⊢  ( 𝜑   →  𝐵   ∈  ( 𝐴  𝐼  𝐶  ) )  
					
						tgbtwnouttr.3 ⊢  ( 𝜑   →  𝐶   ∈  ( 𝐵  𝐼  𝐷  ) )  
				
					Assertion 
					tgbtwnouttr ⊢   ( 𝜑   →  𝐵   ∈  ( 𝐴  𝐼  𝐷  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							tkgeom.p ⊢  𝑃   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							tkgeom.d ⊢   −    =  ( dist ‘ 𝐺  )  
						
							3 
								
							 
							tkgeom.i ⊢  𝐼   =  ( Itv ‘ 𝐺  )  
						
							4 
								
							 
							tkgeom.g ⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
						
							5 
								
							 
							tgbtwnintr.1 ⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
						
							6 
								
							 
							tgbtwnintr.2 ⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
						
							7 
								
							 
							tgbtwnintr.3 ⊢  ( 𝜑   →  𝐶   ∈  𝑃  )  
						
							8 
								
							 
							tgbtwnintr.4 ⊢  ( 𝜑   →  𝐷   ∈  𝑃  )  
						
							9 
								
							 
							tgbtwnouttr.1 ⊢  ( 𝜑   →  𝐵   ≠  𝐶  )  
						
							10 
								
							 
							tgbtwnouttr.2 ⊢  ( 𝜑   →  𝐵   ∈  ( 𝐴  𝐼  𝐶  ) )  
						
							11 
								
							 
							tgbtwnouttr.3 ⊢  ( 𝜑   →  𝐶   ∈  ( 𝐵  𝐼  𝐷  ) )  
						
							12 
								9 
							 
							necomd ⊢  ( 𝜑   →  𝐶   ≠  𝐵  )  
						
							13 
								1  2  3  4  6  7  8  11 
							 
							tgbtwncom ⊢  ( 𝜑   →  𝐶   ∈  ( 𝐷  𝐼  𝐵  ) )  
						
							14 
								1  2  3  4  5  6  7  10 
							 
							tgbtwncom ⊢  ( 𝜑   →  𝐵   ∈  ( 𝐶  𝐼  𝐴  ) )  
						
							15 
								1  2  3  4  8  7  6  5  12  13  14 
							 
							tgbtwnouttr2 ⊢  ( 𝜑   →  𝐵   ∈  ( 𝐷  𝐼  𝐴  ) )  
						
							16 
								1  2  3  4  8  6  5  15 
							 
							tgbtwncom ⊢  ( 𝜑   →  𝐵   ∈  ( 𝐴  𝐼  𝐷  ) )